• 제목/요약/키워드: interaction energy.

검색결과 1,946건 처리시간 0.027초

Effects of exhaustive exercise on ER Stress of skeletal muscle and adipose tissue in rats

  • In, Dae-Hyeong;Woo, Sang-Koo;Kim, Ki-Hoon
    • 운동영양학회지
    • /
    • 제17권2호
    • /
    • pp.35-42
    • /
    • 2013
  • The purpose of this study was to identify the effects of gene expression of endoplasmic reticulum (ER) stress in skeletal muscle and adipose tissue on acute exhaustive exercise. Thirty-five Sparague Dawley male rats were divided into a control group (CON, n = 7) and a exhaustive exercise group (n = 28), immediately after exhaustive exercise group (n = 7), after 30 minutes exhaustive exercise group (n = 7), after 60 minutes exhaustive exercise group (n = 7), after 180 minutes exhaustive exercise group (n = 7). As a result, changes in the composition of the blood serum triglyceride concentration increased significantly in immediately after exhaustive exercise group, On the contrary, blood glucose showed a significantly decreased (p < .05). Homeostasis of energy metabolism due to exhaustive exercise as a result of the mechanism of action of skeletal muscle in the glycogenolysis and absorption, which indicates that the process of means. On the other hand, a result of examining changes in endoplasmic reticulum stress-related proteins in skeletal muscle and adipose tissue, JNK1 except in skeletal muscle BiP, ATF4, CHOP, GRP78 mRNA increased significantly immediately after exercise, and after 30 minutes returned to normal levels that could be confirmed (p < .05). BiP mRNA in adipose tissue show a similar pattern and skeletal muscle increased significantly immediately after exercise, but other changes in the specificity of the endoplasmic reticulum stress-related proteins also did not appear. In conclusion, Exercise applies and exercise training duration and exercise intensity as well as research on the interaction of the endoplasmic reticulum stress-related genes should be study continuously, to be more clear.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

스마트 무역계약 연구의 체계적 문헌고찰 (Systematic Literature Review of Smart Trade Contract Research)

  • 이호형
    • 무역학회지
    • /
    • 제48권3호
    • /
    • pp.243-262
    • /
    • 2023
  • 본 연구는 스마트 무역계약의 체계적 문헌고찰을 통해 스마트계약과 블록체인 기술을 활용한 무역계약의 디지털화와 자동화에 관한 연구 동향과 이론적 배경을 파악하고, 기술적 측면과 법적 측면에서의 도전 과제와 해결 방안을 분석하였다. 스마트 무역계약은 블록체인을 기반으로 한 자동화된 계약 시스템의 개념을 무역과 관련된 거래에 적용한 것이다. 기술적 측면에서는 스마트계약 플랫폼의 개발, 블록체인 네트워크의 확장성과 성능 개선, 보안 및 개인 정보 보호 등을 다루었고, 법적 측면에서는 스마트계약의 법적 구속력, 계약 조건의 자동 이행과 이의 실현 가능성, 계약 당사자의 책임과 의무 등을 다루었다. 스마트 무역계약은 국제무역, 공급망 관리, 금융, 보험, 에너지 등 다양한 산업 분야에서 적용 사례가 발견되고 있으며, 이를 통해 무역금융의 용이성과 공급망의 효율성 향상, 비즈니스 모델 혁신에 이바지할 수 있는 것으로 확인되었다. 그러나 스마트 무역계약의 한계점으로는 법적 규제와의 상호작용 문제, 기술적 측면에서의 도전 과제 등이 있으며, 후속 연구에서는 실증 연구, 비즈니스 모델 혁신, 법적 쟁점 해결, 보안과 개인 정보 보호, 표준화와 협력, 사용자 경험 연구 등 다양한 측면을 고려해야 할 것으로 판단된다.

The Effect of Trade Agreements on Korea's Bilateral Trade Volume: Mitigating the Impact of Economic Uncertainty in Trading Countries

  • Heedae Park;Jiyoung An
    • Journal of Korea Trade
    • /
    • 제27권5호
    • /
    • pp.153-166
    • /
    • 2023
  • Purpose - This research empirically analyzes the influence of economic policy uncertainty and free trade agreements (FTAs) on bilateral trade volumes between Korea and its trading partners. The study investigates whether fluctuations in the Economic Policy Uncertainty Index (EPUI) for both Korea and its trading partners significantly impact trade volumes and whether the implementation of FTAs mitigates these effects. Design/methodology - The study employs dynamic panel data analysis using the system generalized method of moments (system GMM) estimation method to achieve its research objectives. It utilizes country-month-level panel data, including the EPUI, trade volume between Korea and its trading partner countries, and other pertinent variables. The use of system GMM allows for the control of potential endogeneity issues and the incorporation of country-specific and time-specific effects. Findings - The analysis yields significant results regarding the impact of economic policy uncertainty on Korea's exports and imports, particularly before the implementation of FTAs. An increase in the EPUI of trading partners leads to a notable increase in Korea's exports to them. Conversely, an increase in Korea's EPUI negatively affects its imports from trading partners. However, post-FTA implementation, the influence of each country's EPUI on trade volume is neutralized, with no significant difference observed. Originality/value - This research contributes to the existing literature by providing empirical evidence on the interaction effects between economic policy uncertainty and FTAs on bilateral trade volumes. The study's uniqueness lies in its examination of how FTAs mitigate the impact of economic uncertainty on trade relations between countries. The findings underscore the importance of trade agreements as mechanisms to address economic risks and promote international trade relations. In a world where global market uncertainties persist, these insights can aid policymakers in Korea and other countries in enhancing their trade cooperation strategies and navigating challenges posed by evolving economic landscapes.

Effect of loading frequency and clay content on the dynamic properties of sandy-clay mixtures using cyclic triaxial tests

  • Alireza Hasibi Taheri;Navid Hadiani;S. Mohammad Ali Sadredini;Mahmood Zakeri Nayeri
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.317-328
    • /
    • 2024
  • Adopting a rational engineering methodology for building structures on sandy-clay soil layers has become increasingly important since it is crucial when structures erected on them often face seismic and cyclic wave loads. Such loads can cause a reduction in the stiffness, strength, and stability of the structure, particularly under un-drained conditions. Hence, this study aims to investigate how the dynamic properties of sand-clay mixtures are affected by loading frequency and clay content. Cyclic triaxial tests were performed on a total of 36 samples, comprising pure sand with a relative density of 60% and sand with varying percentages of clay. The tests were conducted under confining pressures of 50 and 100 kPa, and the samples' dynamic behavior was analyzed at loading frequencies of 0.1, 1, and 4 Hz. The findings indicate that an increase in confining pressure leads to greater inter-particle interaction and a reduced void ratio, which results in an increase in the soil's shear modulus. An increase in the shear strength and confinement of the samples led to a decrease in energy dissipation and damping ratio. Changes in loading frequency showed that as the frequency increased, the damping ratio decreased, and the strength of the samples increased. Increasing the loading frequency not only reflects changes in frequency but also reduces the relative permeability and enhances the resistance of samples. An analysis of the dynamic properties of sand and sand-clay mixtures indicates that the introduction of clay to a sand sample reduces the shear modulus and permeability properties.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots

  • Hong Nhung Nguyen;Phuoc Tho Tran;Nghiem Anh Tuan Le;Quoc Hien Nguyen;Duy Du Bui
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.261-271
    • /
    • 2024
  • Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CS-Cu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

기체상에서 Cu+ 및 Cu2+ 이온과 proline의 상호작용 (Interaction of Proline with Cu+ and Cu2+ Ions in the Gas Phase)

  • 이갑용
    • 대한화학회지
    • /
    • 제53권3호
    • /
    • pp.257-265
    • /
    • 2009
  • $Cu^{+}$$Cu^{2+}$와 proline의 결합형태에 따른 구조 및 금속 친화도를 DFT(Density Functional Theory) 방법으로 조사하였다. 금속-proline의 결합과 여러 결합형태에 따른 에너지 순서는 $Cu^{+}$-Proline및 $Cu^{2+}$-proline 착화합물에서 서로 매우 상이함을 알았다. $Cu^{+}$-Proline의 경우, 바닥상태의 구조는 $Cu^{+}$가 중성 proline의 카르보닐 산소 및 이미노기 질소에 배위된 두 자리 배위를 하며, 이에 비해 $Cu^{2+}$-Proline 의 바닥상태의 구조는 zwitter이온 형태 proline의 카르복시기의 두 산소 사이에 chelation을 형성하는 구조임을 확인하였다. 가장 안정한 $Cu^{+}$-Proline 착화합물에서 proline의 금속 이온 친화도는 6-311++G(d,p) 수준에서 76.0 kcal/mol로 계산되었으며, proline의 $Cu^{2+}$ 이온 친화도는 258.5 kcal/mol로 나타났다.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.