• Title/Summary/Keyword: interacting multiple model method

Search Result 61, Processing Time 0.041 seconds

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain (퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.255-263
    • /
    • 2012
  • This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking (기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise (혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상)

  • 강상기;백성준;이기용;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.387-393
    • /
    • 2002
  • The enhancement technique of noise signal using mixture HFM (Midden Filter Model) are proposed. Given the parameters of the clean signal and noise, noisy signal is modeled by a linear state-space model with Markov switching parameters. Estimation of state vector is required for estimating original signal. The estimation procedure is based on mixture interacting multiple model (MIMM) and the estimator of speech is given by the weighted sum of parallel Kalman filters operating interactively. Simulation results showed that the proposed method offers performance gains relative to the previous results with slightly increased complexity.

Design of target state estimator and predictor using multiple model method (다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구)

  • Jung, Sang-Geun;Lee, Sang-Gook;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model (Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적)

  • Park, Seong-Keun;Hwang, Jae-Pil;Rou, Kyung-Jin;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.863-870
    • /
    • 2008
  • In this paper, a new filtering scheme for vehicle tracking with distorted measurement is presented. This filtering scheme is essential for the implementation of the adaptive cruise control (ACC) system. The proposed method combines the IMM and the probabilistic fuzzy model and is named as the Fuzzy IMM (FIMM). The IMM is employed to recognize the intention of the preceding vehicle. The probabilistic furry model is introduced to compensate the distortion of the range sensor. Finally, a computer simulation is performed to illustrate the validity of the suggested algorithms.

Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target (3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석)

  • Park, Sung-Lin;Kim, Ki-Cheol;Kim, Yong-shik;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF