• Title/Summary/Keyword: inter-cell Interference

Search Result 142, Processing Time 0.026 seconds

Design and Performance Analysis of Hybrid Receiver based on System Level Simulation in Backhaul System (백홀 시스템에서 시스템 레벨 시뮬레이션 기반 하이브리드 수신기 설계 및 성능 분석)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.3-11
    • /
    • 2015
  • An advanced receiver which can manage inter-cell interference is required to cope with the explosively increasing mobile data traffic. 3rd Generation Partnership Project (3GPP) has discussed network assisted interference cancellation and suppression (NAICS) to improve signal-to-noise-plus-interference ratio (SINR) and receiver performance by suppression or cancellation of interference signal from inter-cells. In this paper, we propose the advanced receiver based on soft decision to reduce the interference from neighbor cell in LTE-Advanced downlink system. The proposed receiver can suppress and cancel the interference by calculating the unbiased estimation value of interference signal using minimum mean square error (MMSE) or interference rejection combing (IRC) receiver. The interference signal is updated using soft information expressed by log-likelihood ratio (LLR). We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced downlink system. Simulation results show that the proposed receiver can improve SINR, throughput, and spectral efficiency of conventional system.

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

Performance Improvement with Intra-site CoMP for C-RAN Networks

  • Jin, Yi;Joe, InWhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.98-100
    • /
    • 2016
  • Coordinated multi-point (CoMP) transmission adopt the Base Stations (BS) cooperatively process User Equipment (UE) connected to multi-points to improve UEs spectral efficiency at the cell edge and eliminate the inter-cell interference (ICI). This technology is important for UEs at the cell edge. Considering the real environment, energy consumption and cost situation, we propose in a Local C-RAN architecture deployment of CoMP and observed its spectral efficiency and Signal-to-Interference and Noise Ratio (SINR) in intra-site CoMP scenarios. Simulation results show that this approach has significantly enhanced than Non-CoMP.

Resource Allocation Scheme for D2D Communications in Multi-Cell Environments (다중 셀 환경에서 단말 간 직접 통신을 위한 자원 할당 방식)

  • Oh, Sung-Min;Lee, Changhee;Yun, Miyoung;Shin, Jaesheung;Park, Ae-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.601-609
    • /
    • 2014
  • This paper proposes a resource allocation scheme suitable for D2D communications in multi-cell environment. In order to solve the inter-cell interference, the proposed scheme allocates the pre-assigned resource group and shares the information with neighbor cells. This paper also proposes a power control scheme for D2D communication to enhance the cell throughput. By the simulation results, the average SINR of the cellular uplink and D2D communication link are mostly higher than 10 dB when the proposed scheme is applied. On the other hand, with the inter-cell non-coordinated resource allocation scheme, the average SINR of the D2D communication link are decreased by 0 dB. In addition, the proposed scheme can enhance the cell throughput up to 8 % compared with the inter-cell non-coordinated resource allocation scheme.

Distributed Carrier Aggregation in Small Cell Networks: A Game-theoretic Approach

  • Zhang, Yuanhui;Kan, Chunrong;Xu, Kun;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4799-4818
    • /
    • 2015
  • In this paper, we investigate the problem of achieving global optimization for distributed carrier aggregation (CA) in small cell networks, using a game theoretic solution. To cope with the local interference and the distinct cost of intra-band and inter-band CA, we propose a non-cooperation game which is proved as an exact potential game. Furthermore, we propose a spatial adaptive play learning algorithm with heterogeneous learning parameters to converge towards NE of the game. In this algorithm, heterogeneous learning parameters are introduced to accelerate the convergence speed. It is shown that with the proposed game-theoretic approach, global optimization is achieved with local information exchange. Simulation results validate the effectivity of the proposed game-theoretic CA approach.

Traffic Asymmetry Balancing in OFDMA-TDD Cellular Networks

  • Foutekova, Ellina;Sinanovic, Sinan;Haas, Harald
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • This paper proposes a novel approach to interference avoidance via inter-cell relaying in cellular OFDMA-TDD (orthogonal frequency division multiple access - time division duplex) systems. The proposed scheme, termed asymmetry balancing, is targeted towards next-generation cellular wireless systems which are envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing resolves the detrimental base station (BS)-to-BS interference problem inherent to TDD networks by synchronizing the TDD switching points (SPs) across cells. In order to maintain the flexibility of TDD in serving the asymmetry demands of individual cells, inter-cell relaying is employed. Mobile stations (MSs) in a cell which has a shortage of uplink (UL) resources and spare downlink (DL) resources use free DL resources to off-load UL traffic to cooperating MSs in a neighboring cell using ad hoc communication. In an analogous fashion DL traffic can be balanced. The purpose of this paper is to introduce the asymmetry balancing concept by considering a seven-cell cluster and a single overloaded cell in the center. A mathematical model is developed to quantify the envisaged gains in using asymmetry balancing and is verified via Monte Carlo simulations. It is demonstrated that asymmetry balancing offers great flexibility in UL-DL resource allocation. In addition, results show that a spectral efficiency improvement of more than 100% can be obtained with respect to a case where the TDD SPs are adapted to the cell-specific demands.

Pilot Symbol Assisted Weighted Data Fusion Scheme for Uplink Base-Station Cooperation System

  • Zhang, Zhe;Yang, Jing;Zhang, Jiankang;Mu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.528-544
    • /
    • 2015
  • Base Station Cooperation (BSC) has been a promising technique for combating the Inter-Cell Interference (ICI) by exchanging information through a high-speed optical fiber back-haul to increase the diversity gain. In this paper, we propose a novel pilot symbol assisted data fusion scheme for distributed Uplink BSC (UBSC) based on Differential Evolution (DE) algorithm. Furthermore, the proposed scheme exploits the pre-defined pilot symbols as the sample of transmitted symbols to constitute a sub-optimal Weight Calculation (WC) model. To circumvent the non-linear programming problem of the proposed sub-optimal model, DE algorithm is employed for searching the proper fusion weights. Compared with the existing equal weights based soft combining scheme, the proposed scheme can adaptively adjust the fusion weights according to the accuracy of cooperative information, which remains the relatively low computational complexity and back-haul traffic. Performance analysis and simulation results show that, the proposed scheme can significantly improve the system performance with the pilot settings of the existing standards.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network

  • Palanisamy, Padmaloshani;Sivaraj, Nirmala
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.318-329
    • /
    • 2018
  • Femtocell (FC) technology envisaged as a cost-effective approach to attain better indoor coverage of mobile voice and data service. Deployment of FCs over macrocell forms a heterogeneous network. In urban areas, the key factor limits the successful deployment of FCs is inter-cell interference (ICI), which severely affects the performance of victim users. Autonomous FC transmission power setting is one straightforward way for coordinating ICI in the downlink. Application of intelligent control using soft computing techniques has not yet explored well for wireless networks. In this work, autonomous FC transmission power setting strategy using Adaptive Neuro Fuzzy Inference System is proposed. The main advantage of the proposed method is zero signaling overhead, reduced computational complexity and bare minimum delay in performing power setting of FC base station because only the periodic channel measurement reports fed back by the user equipment are needed. System level simulation results validate the effectiveness of the proposed method by providing much better throughput, even under high interference activation scenario and cell edge users can be prevented from going outage.

Distributed BS Transmit Power Control for Utility Maximization in Small-Cell Networks (소형 셀 환경에서 유틸리티 최대화를 위한 분산화된 방법의 기지국 전송 전력 제어)

  • Lee, Changsik;Kim, Jihwan;Kwak, Jeongho;Kim, Eunkyung;Chong, Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1125-1134
    • /
    • 2013
  • Small cells such as pico or femto cells are promising as a solution to cope with higher traffic explosion and the large number of users. However, the users within small cells are likely to suffer severe inter-cell interference (ICI) from neighboring base stations (BSs). To tackle this, several papers suggest BS transmit power on/off control algorithms which increase edge user throughput. However, these algorithms require centralized coordinator and have high computational complexity. This paper makes a contribution towards presenting fully distributed and low complex joint BS on/off control and user scheduling algorithm (FDA) by selecting on/off pattern of BSs. Throughput the extensive simulations, we verify the performance of our algorithm as follows: (i) Our FDA provides better throughput performance of cell edge users by 170% than the algorithm without the ICI management. (ii) Our FDA catches up with the performance of optimal algorithm by 88-96% in geometric average throughput and sufficiently small gap in edge user throughput.