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Abstract 

Base Station Cooperation (BSC) has been a promising technique for combating the Inter-Cell 

Interference (ICI) by exchanging information through a high-speed optical fiber back-haul to 

increase the diversity gain. In this paper, we propose a novel pilot symbol assisted data fusion 

scheme for distributed Uplink BSC (UBSC) based on Differential Evolution (DE) algorithm. 

Furthermore, the proposed scheme exploits the pre-defined pilot symbols as the sample of 

transmitted symbols to constitute a sub-optimal Weight Calculation (WC) model. To 

circumvent the non-linear programming problem of the proposed sub-optimal model, DE 

algorithm is employed for searching the proper fusion weights. Compared with the existing 

equal weights based soft combining scheme, the proposed scheme can adaptively adjust the 

fusion weights according to the accuracy of cooperative information, which remains the 

relatively low computational complexity and back-haul traffic. Performance analysis and 

simulation results show that, the proposed scheme can significantly improve the system 

performance with the pilot settings of the existing standards. 

Keywords: Uplink base station cooperation, inter-cell interference, weighted data fusion, 

pilot symbols, differential evolution algorithms 
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1. Introduction 

As the ever increasing demands for high frequency efficiency, multi-cell communication 

systems have emerged by reusing frequency among different cells. However, Inter-Cell 

Interference (ICI) has become a dominant factor that restricts the improvement of system 

performance due to the frequency reuse [1][2][3]. ICI may cause significant detriment to the 

Quality of Service (QoS) of the mobile terminal especially for those located at the cell edge 

and the overall system capacity [4]. Base Station Cooperation (BSC) has arisen as a promising 

technique in combating ICI [3][5]. The basic idea of BSC is that the adjacent Base Stations 

(BSs) exchange their information through a high-speed optical fiber back-haul, then the 

cooperative information is exploited by a centralized or distributed Central Processing Units 

(CPUs) for joint optimization in order to increase the diversity gain. 

In the uplink, the received signals at BS can be classified into three groups: local 

information, adjacent information and additive noise. The local information represents 

information transmitted by the Mobile Stations (MSs) served by the current BS (denoted as 

anchor BS), and the information transmitted by the MSs located in the adjacent cells is usually 

viewed as the inter-cell interference to the anchor BS. However, the anchor BS of the BSC 

system exploits the dormant information from interference induced by adjacent cells. Two 

intuitive signal processing methods are widely explored for combating inter-cell interference 

in Uplink Base Station Cooperation (UBSC) system. With distributed CPUs, the Interference 

Cancellation (IC) method cancels the adjacent interference by utilizing signals forwarded from 

adjacent BSs, which are the detected signals of MSs from adjacent cells [6][7][8]. This method 

is highly dependent on the channel estimation accuracy, which limits the promotion of the 

attainable performance. The other method is known as data fusion, which aims to enhance the 

reliability of local information from anchor BS’s serving MSs [5][9]. Specifically, adjacent 

BSs recover information from their serving MSs and then transmit them to the anchor BS. The 

anchor BS combines cooperative information and fuses these data to enhance the reliability of 

desired MS’s information. 

Wu etc. adopted the Soft Combining (SC) approach and proposed a three-stage information 

exchange technique to perform UBSC in [5]. In this scheme, each BS performed local 

decoding and generated Log-Likelihood Ratios (LLRs) for all the information bits. The LLRs 

generated in different BSs were then forwarded to a centralized CPU and were combined for 

enhancing signal estimation. A Distributed Probabilistic Data Association and Soft 

Combining (DPDA-SC) UBSC scheme was developed [9] to combat ICI, where all BSs 

shared their recovered information with each other and exchanged the recovered information 

in the term of soft information, then the anchor BS combined the cooperative information as a 

distributed CPU. Benefited from the information sharing and data fusion, the SC scheme 

reduced ICI with a mediocre computational complexity. But equal fusing weights were 

assigned to the cooperative information from different BSs, which can not distinguish the 

reliability of the cooperative information. However, the channel links suffer different qualities 

due to their specific scattering environment. Hence, it is necessary to explore weighted data 

fusion algorithms, which can adaptively update the weights in accordance with channel link’s 

qualities. 

Against this background, a novel DE based pilot aided weighted data fusion is proposed for 

distributed UBSC system. Using the pilot information as reference, a sub-optimal weighted 

calculation model is proposed. However, the proposed model is an intractable non-linear 
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programming problem, which is challenge to acquire a closed-form solution. We adopts 

Differential Evolution (DE) algorithm to approach sub-optimal fusing weights in this paper. 

Compared with the traditional soft combining scheme with equal weights, the proposed 

scheme can highlight the information undergone high-quality channel links and weaken the 

contribution of the information undergone poor-quality channel links. Specifically, the 

contributions in this work were: 

  - A sub-optimal Weight Calculation (WC) model for UBSC system is proposed. As the 

optimal WC model is difficult to solve, we employ the pilot information establishing a 

sub-optimal WC model, which reduces the computational complexity of the optimization 

for the fusing weights compared with the optimal WC model. 

  - A DE algorithm based data fusion scheme is proposed. Against the non-linear programming 

problem of the proposed sub-optimal WC model, the DE algorithm is used to optimize the 

sub-optimal objective function iteratively. Furthermore, we apply the convergence and 

computational complexity analysis of the proposed DE aided weighted data fusion scheme. 

The rest of this paper is organized as follows. The UBSC system model is given in Section 2. 

A sub-optimal WC model for UBSC system and a DE based weighted data fusion scheme are 

proposed in Section 3, the convergence and computational complexity of the proposed scheme 

are also analysed in this section. Section 4 investigates the performance of the proposed 

scheme, and Section 5 gives the conclusions. 

2. Weighted Data Fusion Model for Uplink Base-Station Cooperation 
System 

A distributed base-station cooperation scheme for the scenario of three cells in term of 

hexangular cellular is illustrated in Fig. 1. Three adjacent cells surrounded by the thick solid 

line form a cooperative transmission area indicated by the shaded hexagon, where the three 

cooperative cells exchange their information through the optical fiber back-haul between BSs.  

 
Fig. 1. Three-cell base-station cooperation model in a hexangular cellular system 

 

Assume an uplink cooperation area of rN  BSs, where each BS is equipped with rK  

receive antennas supporting tN  single antenna co-channel MSs located in these cooperation 
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cells. Here we refer the 
rn -th BS as the anchor BS. The received signal in the frequency 

domain r

r

k

nY  at the 
rk -th antenna of the 

rn -th BS can be expressed as: 
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where 
1

 c

t

N

n CX  denotes the transmitted signal by the tn -th MS in the frequency domain
1
, 

)(diag   represents the diagonal operation, and cN  is the number of sub-carriers. 

1

,


 cr
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nn CH  denotes the frequency domain channel transfer function(FD-CHTF) of the link 

between the tn -th MS and the rk -th antenna of the rn -th BS, and 
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 cr

r

Nk

n CW  represents 

the Additive White Gaussian Noise (AWGN) with zero mean and co-variance 
2

W . The tN  

indexes of the co-channel MSs can be decomposed into two sub-sets according to whether the 

tn -th MS belongs to the anchor BS(the rn -th BS). The indices of the MS belong to the rn -th 

BS cell are classified into the sub-set 
rnA , which contains 1, 

rnAC  index. By contrast, the 

rest are classified into the sub-set 
rnB , which contains 1,  tnB NC

r
 indices. The first term 


rn

r

rAi

k

nii ,)(diag HX  in (2) represents the received signals at the rk -th receive antenna of 

the rn -th BS, which are the signals sent by the MS belonging to the rn -th BS itself. The 

second term  
rn

r

rBj

k

njj ,)(diag HX  represents the received signals sent by the MSs 

belonging to other cooperating BSs, which is denoted as r

r

k

nB,Y . 

 
Fig. 2. Receiver model of the data fusion based UBSC system 

                                                           
1 For simplicity, we do not introduce modulation operations, 

tnX  refers to 0/1  bits vector here. But without loss 

of generality, the proposed model is also feasible with modulations. 
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In the data fusion based distributed UBSC system, r

r

k

nB,Y  is treated as exploitable 

cooperating signals instead of interference, as illustrated in Fig. 2. After the signal processing 

of channel estimation and Multi-User Detection (MUD), the anchor BS may recover the initial 

estimate   
rt ncn nXs Yˆ  concerning the cn -th transmitted bit )( cn nX

t
, which may be an 

elementary recovered bit information and/or the Log-Likelihood Ratio (LLR)
2
 of the bit, 
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where ])(,Pr[ unX cnn tr
Y  is the joint probability of the initial transmitted bit 

unX cnt
)( , 1,0u  and 

rnY . 

     The recovered information  
rns YX̂  are further classified into  

rrn nAs YX̂  and 

 
rrn nBs YX̂ , which is a subset that consists of  

       
rrNrrnrrnr nAnAnAnA ssss YXYXYXYX ˆ,,ˆ,ˆ,,ˆ

111



. The rn -th BS keeps its desired 

signal  
rrn nAs YX̂  for data fusion and sends  

rrn nBs YX̂  to their own anchor BSs for their 

cooperatively processing. The rn -th BS gathers 

       
rrnrrnrrnrn NAnAnAA ssss YXYXYXYX ˆ,,ˆ,ˆ,,ˆ

111    from cooperative BSs by 

exchanging information with each other, and then fuses the collected cooperative information 

with  
rrn nAs YX̂  in the data fusion processor. 

With the assumption of 
rnt An  , the fusion result concerning 

tnX  in the anchor BS can 

be written as: 
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where coopY  represents the assembled result consists of the received signal 
rnY  of the anchor 

BS and the received signal nY , rnn   from the cooperative BSs, 
rt nn ,  denotes the fusing 

weight of the fused information )|ˆ(
rt nns YX . By mapping the initial 0/1  bit into the 1/1  , a 

generalized decision model for (5) can be formulated as: 

                                                           
2 The LLR information is an elementary estimated soft information generated from limited receiving signals, so 

further multi-BS cooperation is needed even the LLR information used here. 
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    Compared to the traditional distributed UBSC schemes, the weighted based data fusion 

scheme could achieve the same performance without imposing additional information 

exchange, except that the information was exchanged using the backhaul. The proposed 

scheme of the model of soft cooperative information retains the same information exchange 

with the soft combining scheme. While the proposed scheme of the model of hard cooperative 

information remains the same level of information exchanging with the interference 

cancellation scheme. 

3. Differential Evolution Algorithm Based Weighted Data Fusion Scheme 

3.1 Optimization Criterion of Weights Calculating 

Without loss of generality, we use the elementary recovered bit information as the fused 

information, i.e. 
rtrt nnnns ,

ˆ)|ˆ( XYX  . The final object of weighted data fusion is to lead 

coop,
ˆ

tnX  to approach to the initial transmitted signal 
tnX , which means that the optimal 

objective function of WC can be written as: 

  ,ˆ
2

coop,opt ttt nnnJ XXω                                                     (7) 

where ],,,,[ ,,1, rtrttt Nnnnnn  ω  represents the weight vector. In fact, we don’t know 

the actual information of 
tnX , and it is a challenge to acquire the optimal solution of (7). 

In typical physical resource blocks, some resource blocks are assigned to pre-defined pilot 

information to aid channel estimation or some other processing at the receivers [10]. Hence, 

the WC processing at the anchor BS with the proposed pilot-aided distributed UBSC system 

can be described as: 
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where )(WC F  represents a WC sub-processor within the data fusion processor. 
p

nt
X  

represents the tn -th MS’s pre-defined pilot information. 

In (7), the receiver doesn’t know the actual 
tnX . However, the receiver has the information 

of the pre-defined pilot 
p

nt
X , which may be viewed as the sample of 

tnX . Thus, the optimal 

objective function (7) can be rewritten as an sub-optimal version, which is a Minimum Mean 

Square Error (MMSE) problem, 
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where 
p

nt coop,X̂  represents the fused information at pilot positions. Similarly, a sub-optimal 

objective function can be written for soft fused information (LLR) as: 
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where )|ˆ(LLR coopYX
p

nt
 represents the LLR information at pilot positions after data fusion 

process, )|(LLR
rt n

p

n YX  represents the LLR information at pilot positions with initial pilots. 

An approximate technique in [11][12] can be employed for generating the LLR information. 

The sub-optimal objective function (9) depends on the pre-defined pilot. Assuming the pilot 

ratio of initial transmitted symbols is pp  with 10  pp . Apparently, if 1pp , all 

transmitted symbols will be used as pilot symbols, then we have: 
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Furthermore, (11) means that the sub-optimal objective function (9) can converge to the 

optimal objective function (7) with 1pp , which can be formulated as: 
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It can be easily seen that (9) and/or (10) is a multi-dimensional global optimization problem 

with non-linear objective function, it is a challenge to obtain a closed-form solution. In this 

paper, we propose a DE algorithm based weighted data fusion scheme, which employs DE 

algorithm to iteratively search the solution space with regard to the Cost Function (CF) of (9) 

and/or (10). 

3.2 Differential Evolution Algorithm based Weights Optimization 

As a relatively new member in the family of Evolutionary Algorithms (EAs), the DE [13] 

algorithm constitutes a random guided population-based optimizer, which employs difference 

vectors to explore the objective function landscape. Compared to most other EAs, DE holds 

easier operation steps and lower space complexity while exhibits remarkable performance on a 

wide variety of problems including the multi-dimensional global optimization [14]. Hence, it 

is suitable to circumvent the optimization problem in Equation (9). 

Fig. 3 shows a flow chart of DE, which mainly includes the initialization, mutation, 

crossover, selection, adaptation steps to constitute an iterative progression. Specifically, the 

algorithmic steps in DE are formulated in more details as follows: 

1) Initialization. 

Generate the population of sP  real-valued weight vectors, where the sp -th vector of the 

population in the first generation of 1g  can be expressed as: 

 ,~,,~,~
,,12,,11,,1,1 

 Npppp ssss
ω                                         (13) 

where N  represents the number of weights, which equals to tN  here. Evaluate the CF value 

)( ,1 spJ ω  of each vector 
sp,1ω  using Equation (9), then sort the CF value according to the 

descending order. 

2) Mutation. 

    Randomly generate the scaling factor 
sp according to a Cauchy distribution 

)1.0,(randc 
ss pp   [11], which controls the rate at which the population evolves. Select 

the )%100( spP  best vector that has the lowest CF value to generate the “best archive”, which 

includes the vectors owning more meritorious characteristics, and will be further exploited to 

generate new vectors. Here p  represents a greedy factor, which determines the greediness of  
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Fig. 3. Flowchart of DE based weight calculation scheme 

 

the mutation strategy. For each sp , ss Pp ,,1 , randomly choose a vector index 1r  from 
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the “best archive” indexes, and select two vector indexes 2r  and 3r  from the current 

population indexes to further generate the difference vector, while 321 rrrps  . Create 

a mutant vector 
spg ,v  for the target vector 

spg ,ω  by combining it with the “best” vector 

1,best, rgω , the difference vector 2,rgω  and 3,rgω , which can be written as: 

   .3,2,,1,best,,, rgrgppgrgppgpg sssss
ωωωωωv                     (14) 

3) Crossover. 

Randomly generate the crossover probability ]1,0[rC  using a uniform random number 

generator )1.0,(randn
rssp CprC  , which is a problem-specific value that controls the 

fraction of parameter values that copied from the mutant vectors. For each n ,  Nn ,,1 , 

build trial vectors out of parameter values that have been copied from the base vectors or the 

mutant vectors. Specifically, the n -th parameter value of the sp -th vector in the population 

at the g -th generation is given by: 
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where rand,n  is a randomly chosen index from  Nn ,,1 , aiming at ensuring the trial 

parameter with index rand,n  does not duplicate 
spg ,ω , which means that at least one element 

of 
spg ,t  is inherited of 

spg ,v . 

4) Selection. 

Normalize the trial vector 
spg ,t  and valuate the CF value )( , spgJ t  of each 

spg ,t  according 

to Equation (9). If the trial vector 
spg ,t  has an equal or lower CF value than that of the target 

vector 
spg ,ω , it replaces the target vector in the next generation; otherwise, the target retains 

its place in the population for at least one more generation. Specifically, the selection 

procedure can be described as 

   
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5) Adaptation. 

The update of   and 
rC  is according to: 

   ,mean1   Scc L                                          (17) 

   ,mean1
rrr CACC Scc                                          (18) 

where ]1,0(c  is the adaptive update factor, which controls the rate of the parameter 

adaptation. S  and 
rCS  corresponds to the set of successful scaling factors 

sp  and 

crossover probabilities 
sprC  in the current generation, respectively. The adaptation of 

rC  

uses the usual arithmetic mean Amean , while the Lehmer mean [11][15] is adopted to 

augment the weight of larger successful mutation factors, i.e. 

 


  
S pS pL

sp s
sp s

S /)(mean 2
. 
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6) Termination. 

When any of the following stopping criteria are met, the optimization procedure should be 

halted: 

a. The pre-defined maximum affordable number of generations maxG  has been exhausted.  

b. maxg  generations have passed without a trial vector being accepted.    

Obviously, the set of maxG  and maxg  is essential. A large enough maxG  gives an optimizer 

enough time to find the optimum, while the maxg  also should not be set too low. 

The DE optimization algorithm used in the proposed scheme is capable of converging to the 

optimal solution, which can be proved in a probability viewpoint. Due to the non-continuous 

of (9), there may exists more than one optimal solution for the sub-optimal objective function. 

With a certain accuracy of potential solutions, assume the optimal solutions set as optΩ , which 

contains R  optimal solutions Rωωω ,,, 21  . For the g -th generation, assume the newly 

generated individual vector 
spg ,ω  stands out the  -neighborhood of its nearest r , 

Rr ,,2,1   with a probability of gp . As the DE algorithm always choose the best 

individual vectors to survive into the next generation, as the generation evolving, i.e., the 

number of generations g  increases, gp  decreases monotonically. Thus, when g  approaches 

to infinity, 

  ,0minPrlim
2




rg
rg

ωω                                          (19) 

where   is an arbitrary positive but small value, and  Pr  represents the probability that the 

given event happens. (19) can be further written as: 

  ,1minPrlim
2




rg
rg

ωω                                           (20) 

Equation (20) shows that, as the number of generations g  increasing to infinity, the DE 

optimization algorithm can converge to one of the optimal solution’s  -neighborhoods. 

Considering both (12) and (20), it is obvious that the proposed scheme has the ability to 

converge to the optimal fusing weights. 

3.3 Computational Complexity 

Generally, the computational complexity of population-based stochastic search techniques 

like DE usually depends on the stopping criterion [16]. Neglecting the very simple operations 

like copy/assignment, etc., we only consider the multiplication and addition operations in our 

analysis. Observing the algorithmic steps, we can see that the computational complexity is 

introduced by the initialization, mutation, selection and adaption operations. 

Assume an rN  BSs uplink cooperation, where the block-fading channel is time-invariant 

over sN  consecutive OFDM symbols. Assume K  sub-carriers are used and an M -QAM 

modulation is employed. For a given population size sP  terminated after G  generations, the 

proposed DE based weighted data fusion scheme needs srp PMMNNG )2()1(   

22225  GPGPPNPGN sssrsr times additions and )1()1(  MNNG rp  

GGPPNPGN ssrsr 623   times multiplications. 
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Due to the additional procedure, the computational complexity of the proposed DE based 

weighted data fusion scheme was analyzed and compared with other receiving procedures in 

non-cooperative systems. Compared with the DE algorithm based Multi-User Detection 

(DE-MUD) technique [11], using the default parameters in Table 1, the proposed DE based 

weighted data fusion scheme needs %0059.0  times additions and %0119.0  times 

multiplications of DE-MUD technique, respectively. Thus, the proposed DE based weighted 

data fusion scheme holds an affordable computational complexity. 
 

Table 1. Default parameters settings in DE algorithm 

Initialization of the population Randomly generated 

Population size sP  15 

Maximum number of generations G  20 

maxg  10 

Greedy factor p  0.1 

Adaptive update factor c  0.9 

 

4. Simulation Results and Discussions 

In this section, Monte Carlo simulations have been carried out in order to investigate the 

attainable performance of the proposed DE assisted weighted data fusion scheme in UBSC 

systems. Assuming that two MSs equipped with single transmit antenna located in two 

adjacent cells and they cause ICI to each other. Each BS has eight receive antennas, and three 

adjacent BSs (including the anchor BSs and two interfering MSs) constitute a cooperating area. 

A )3,1,2(  convolution code and 16 -QAM is employed. The number of sub-carriers in one 

OFDM symbol is 64 , and each frame includes 50  OFDM symbols. A 5 -paths Rayleigh 

fading channel is considered for each channel link. Unless specified, the first two OFDM 

symbols of each block are used as pilots, i.e., the default pilot ratio is set as %04.0  [17][18]. 

At the receiver, the cooperative information defaults to using the LLR information, and an 

approximate technique in [11][12] is adopted to generate the cooperative soft LLR 

information. Unless otherwise specified, the default parameter values in DE algorithm are 

listed in Table 1. 

The first experiment investigates the effect of settings about population size sP  and the 

terminating criterion maxg . Fig. 4 shows the average required number of CF-Evaluations 

(CF-Evals.) under different combination of ),( maxgPs   when dB6/ 0 NEb  and 

40max G . Observed in Fig. 4 that the average required number of CF-Evals. increases with 

the population size sP  increases. Actually, the number of CF-Evals. equals to sPG )1(  , 

where G  is the number of generations. But increasing the terminating criterion maxg , the 

average required number of CF-Evals. shows an uneven increase. This can be explained by the 

relationship between G  and maxg . Apparently, maxgG   and is highly dependent on 

maxg . The larger maxg  is, the more difficulty it takes the iterations to be terminated, thus, 
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the faster the average required number of CF-Evals. increases. The BER performance under 

different combination of ),( maxgPs   is carried out in Fig. 5, where 0/ NEb  is also set as 

dB6 . It can be seen that the increase of either sP  or maxg  leads to the decrease of BER. 

This is because small settings of sP  and maxg  can make the termination appear earlier than 

when the convergence is achieved. Especially for 5sP  or 4max g , the BER performs 

very badly. Fig. 5 shows a convergence of BER is achieved when 12sP  and 8max g , 

which means the suitable ),( maxgPs   should be set under these regions. Considering the 

computational complexity of CF-Evals. shown in Fig. 4, we set 15sP  and 10max g  in 

this paper. 

 
Fig. 4. Average required number of CF-Evals. under different combination of ),( maxgPs   

 

Fig. 5. BER performance under different combination of ),( maxgPs   

 

Fig. 6 illustrates the impact of pilot ratio pp  as the second experiment. As pilot ratio pp  

increases, the BER performance shows a steady trend when 0/ NEb  equals dB6 , dB10  and 
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dB14 , respectively. When %02.0pp , the pre-defined pilot information is enough to 

generate accurate fusing weights. As the pilot ratio increases, more pilot information can be 

adopted, but little improvement can be performed. This means that even with a low pp  of 

%02.0 , the proposed pilot aided sub-optimal data fusion scheme performs well. However, in 

existing standards such as IEEE 802.11 a/p std. [17][18], 2-1  OFDM symbols in each frame 

are usually set as pilots to aid channel estimation or other receiver processing, i.e., the pilot 

ratio is set as %04.002.0  . Therefore, the proposed scheme in this paper can effectively 

perform the WC based on the pilot settings according to the existing standards, without 

increasing extra pilot cost. 

 

Fig. 6. BER performance with different pilot ratio pp  

 
Fig. 7. BER performance of the proposed DE based weighted data fusion scheme 

 

In Fig. 7, we investigate the performance of the proposed DE based weighted data fusion 

scheme in UBSC systems. The equal-weighted based soft combining scheme is included as a 

reference for comparison. Assume the 2-nd BS as the desired MS’s serving BS, as the channel 

link qualities between the MS and three BSs are different, the accuracy of cooperative 

information from three BSs is different. The traditional soft combining scheme assigns equal 
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weights to cooperative information from three BSs, which neglects the difference among 

cooperative information’s accuracies, and can not extract useful information effectively. 

Observed in Fig. 7 we can see the soft combining scheme even performs worse than the one of 

2-nd BS without cooperation. However, the proposed DE based weighted data fusion scheme, 

which adopts pilot information as reference, designs fusing weights with consideration of 

different channel links’ qualities to improve system performance. Fig. 7 shows that, compared 

with soft combining scheme, the proposed DE based weighted data fusion scheme can achieve 

about dB2  improvement at the level of 
310BER  . 

 
Fig. 8. BER performance under different channel qualities 

 

Fig. 8 shows the BER plots of the proposed DE based weighted data fusion scheme and the 

soft combining scheme under different channel qualities. We use the channel gain ratio to 

represent the cooperative link’s channel quality, which is specified as the ratio of cooperative 

link’s channel gain over local link’s channel gain. Assume the rn -th BS as the anchor BS, the 

n -th cooperative link’s channel gain ratio can be written as 

FnnFnnn rrr
HH ||||/|||| ,,  , rrr Nnnn ,,1,1,,1   , where F||||   represents the 

Frobenius norm. Generally, we have that 10  n . It can be seen from Fig. 8 that under 

higher 1  and 2  values, the system could achieve lower BER values both with the soft 

combining scheme or the proposed DE based weighted data fusion scheme. This is because the 

higher n ( 2,1n ) refers to the higher channel quality of the n -th cooperative link, which 

means more accurate cooperative information can be applied to the data fusion process on the 

n -th cooperative link. Further, as shown in Fig. 8, the proposed DE based weighted data 

fusion scheme always performs better than the soft combining scheme. Especially for the 

lower n  case, the gain is higher. This is benefited from the fusion weights designing process 

in the proposed DE based weighted data fusion scheme, which fully considered the impact of 

different channel link’s quality to design the fusion weights and thus improve the system 

performance. When n  is lower, the channel links’ qualities radically exhibit different. Then 

the fusion weights should be deliberately designed in order to fully achieve the cooperative 

gains. 

    The efficiency of the proposed scheme under imperfect channel estimation is investigated in 

Fig. 9, where the cooperative information is in term of hard information. The traditional 
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Maximum Ratio Combining (MRC) scheme and the Interference Cancellation (IC) scheme 

[6][7][8] are included as the benchmarks.  The Least Square (LS) estimation is referred as the 

imperfect Channel State Information (CSI) in this experiment. Apparently, the proposed 

scheme outperforms both the MRC scheme and the IC scheme, and it shows stronger 

robustness to channel estimation errors. Due to the reuse of CSI in the cooperation procedure,  

the MRC and IC scheme suffers from the channel estimation errors again. Besides, the IC 

scheme cooperates with the BSs of the interfering MSs instead of all BSs in the cooperation 

area, which may further limit the achievable cooperative diversity. However, the proposed 

scheme exploits the pilot information as the reference for designing the fusing weights without 

CSI, which shuns from the propagation of channel estimation errors.    

 
Fig. 9. BER performance using hard cooperative information under imperfect channel estimation 

5. Conclusion 

In this paper, a DE based pilot aided weighted data fusion scheme is proposed for UBSC 

system in order to combat ICI. A sub-optimal WC model is proposed for pilot aided data 

fusion in UBSC system, which employs pilot information as the sample of transmitted data. In 

order to solve the non-linear programming problem brought by sub-optimal model, the DE 

based weighted data fusion scheme is proposed by iteratively optimizing fusing weights. 

Convergence, computational complexity analysis and simulation results show that the 

proposed scheme can perform weights optimization effectively based on pilot settings in 

existing standards and remain back-haul traffic and a low computational complexity. 

Compared with the traditional equal-weighted soft combining scheme, the proposed scheme is 

capable of achieving about dB2  improvement at the level of 
310BER  . 
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