• Title/Summary/Keyword: intensity of rainfall

Search Result 759, Processing Time 0.03 seconds

Evaluation of Rainfall Erosivity in Korea using Different Kinetic Energy Equations (강우 운동에너지식에 따른 한국의 강우침식인자 평가)

  • Lee, Joon-Hak;Shin, Ju-Young;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.337-343
    • /
    • 2011
  • A particular empirical equation for rainfall kinetic energy is needed to compute rainfall erosivity, calculated by the annual sum of the product of total rainfall energy and maximum 30-min rainfall intensity. If rainfall kinetic energy equation was different, rainfall erosivity will be produced differently. However, the previous studies in Korea had little concern about rainfall kinetic energy equation and it was not clear which rainfall kinetic energy is suitable for Korea. The purpose of this study is to analyze and evaluate the difference of the rainfall erosivity based on different rainfall kinetic energy equations obtained from previous studies. This study introduced new rainfall erosivity factors based on rainfall kinetic energy equation of Noe and Kwon (1984) that is only regression model developed in Korea. Data of annual rainfall erosivity for 21 weather stations in 1980~1999 were used in this study. The result showed that rainfall erosivity factors by the previous equations had been about 10~20% overestimated than rainfall erosivity by Noe and Kwon (1984)'s equation in Korea.

Correlations between variables related to slope during rainfall and factor of safety and displacement by coupling analysis

  • Jeong-Yeon Yu;Jong-Won Woo;Kyung-Nam Kang;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • This study aims to establish the correlations between variables related to a slope during rainfall and factor of safety (FOS) and displacement using a coupling analysis method that is designed to consider both in rainfall conditions. With the recent development of measurement technologies, the approach of using the measurement data in the field has become easier. Particularly, they have been obtained in tests to determine the real-time safety and movement of a slope; however, a specific method has not been finalized. In addition, collected measurement data for recognizing the FOS and displacement in real-time with a specific relevance is difficult, and risks of uncertainty, such as in soil parameters and time, exist. In this study, the correlations between various slope-related variables (i.e., rainfall intensity, rainfall duration, angle of the slope, and mechanical properties including strength parameters of selected three types of soil; loamy sand, silt loam, sand) and the FOS and displacement are analyzed in order of seepage analysis, slope stability analysis and slope displacement analysis. Moreover, the methodology of coupling analysis is verified and a fundamental understanding of the factors that need to be considered in real-time observations is gained. The results show that the contributions of the abovementioned variables vary according to the soil type. Thus, the tendency of the displacement also differs by the soil type and variables but not same tendency with FOS. The friction angle and cohesion are negative while the rainfall duration and rainfall intensity are positive with the displacement. This suggests that understanding their correlations is necessary to determine the safety of a slope in real-time using displacement data. Additionally, databases considering rainfall conditions and a wide range of soil characteristics, including hydraulic and mechanical parameters, should be accumulated.

Effect of Rainfall-Patterns on Slope Stability in Unsaturated Weathered Soils (강우사상의 영향을 고려한 불포화 풍화사면의 안정성)

  • Kim, Byeong-Su;Park, Seong-Wann
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1027-1035
    • /
    • 2013
  • In this study, two rainfall patterns are utilized for practical consideration of rainfall phenomena in unsaturated soil slope design. One is the I.D.F (Intensity-Duration-Frequency) method which is an existing design rainfall method and ignores the effect of the variation of the rainfall according to the time. The other is the Huff method which considers this effect oppositely. First, the safety of factor of the slope according to the variation of an initial suction which means the precedent rainfall effect was examined by means of the application of the I.D.F method. Through the application of two rainfall patterns, it was discussed how the rainfall pattern affects the factor of safety of the slope. As a result, it is found that the Huff method is more practical on the evaluation of the slope stability than the I.D.F method.

A Rainfall Forecasting Model for the Ungaged Point of Meteorological Data (기상 자료 미계측 지점의 강우 예보 모형)

  • Lee, Jae Hyoung;Jeon, Ir Kweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.307-316
    • /
    • 1994
  • The rainfall forecasting model of the short term is improved at the point where meterological data is not gaged. In this study, the adopted model is based on the assumptions for simulation model of rainfall process, meteorological homogeneousness, prediction and estimation of meteorological data. A Kalman Filter technique is used for rainfall forecasting. In the existing models, the equation of the model is non-linear type with regard to rainfall rate, because hydrometer size distribution (HSD) depends on rainfall intensity. The equation is linearized about rainfall rate as HSD is formulated by the function of the water storage in the cloud. And meteorological input variables are predicted by emprical model. It is applied to the storm events over Taech'ong Dam area. The results show that root mean square error between the forecasted and the observed rainfall intensity is varing from 0.3 to 1.01 mm/hr. It is suggested that the assumptions of this study be reasonable and our model is useful for the short term rainfall forecasting at the ungaged point of the meteorological data.

  • PDF

Effect of rainfall patterns on the response of water pressure and slope stability within a small catchment: A case study in Jinbu-Myeon, South Korea

  • Viet, Tran The;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.202-202
    • /
    • 2016
  • Despite the potentially major influence of rainstorm patterns on the prediction of shallow landslides, this relationship has not yet received significant attention. In this study, five typical temporal rainstorm patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event occurred in 2006 in Mt. Jinbu area. The patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS), in order to assess their influences on pore pressure variation and changes in the stability of the covering soil layer in the study area. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety (FS) decreases and the time required to reach the critical state, are governed by rainstorm pattern. The sooner the peak rainfall intensity occurs, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed rainfall patterns were found to have a greater effect on landslide initiation. More specifically, among the five different patterns, the Advanced storm pattern (A1) produced the most critical state, as it resulted in the highest pore pressure across the entire area for the shortest duration; the severity of response was then followed by patterns A2, C, D1, and D2. Thus, it can be concluded that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of pore pressure, and the occurrence of shallow landslides, both in space and time.

  • PDF

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Case Study on the Physical Characteristics of Precipitation using 2D-Video Distrometer (2D-Video Distrometer를 이용한 강수의 물리적 특성에 관한 사례연구)

  • Park, Jong-Kil;Cheon, Eun-Ji;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • This study analyze the synoptic meteorological cause of rainfall, rainfall intensity, drop size distribution(DSD), fall velocity and oblateness measured by the 2D-Video distrometer(2DVD) by comparing two cases which are heavy rainfall event case and a case that is not classified as heavy rainfall but having more than $30mm\;h^{-1}$ rainrate in July, 2014 at Gimhae region. As a results; Over the high pressure edge area where strong upward motion exists, the convective rain type occurred and near the changma front, convective and frontal rainfall combined rain type occurred. Therefore, rainrate varies based on the synoptic meteorological condition. The most rain drop distribution appeared in the raindrops with diameters between 0.4 mm and 0.6 mm and large particles appeared for the convective rain type since strong upward motion provide favorable conditions for the drops to grow by colliding and merging so the drop size distribution varies based on the location or rainfall types. The rainfall phases is mainly rain and as the diameter of the raindrop increase the fall velocity increase and oblateness decrease. The equation proposed based on the 2DVD tends to underestimated both fall velocity and oblateness compared with observation. Since these varies based on the rainfall characteristics of the observation location, standard equation for fall velocity and oblateness fit for Gimhae area can be developed by continuous observation and data collection hereafter.

Analysis of Flood Runoff Characteristics due to Rainfall Pattern Change: Comparison of Applications to Small and Medium Size Basins (강우의 특성 변화에 따른 유출 특성의 변화분석: 소유역과 중규모 유역에의 적용 비교)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.417-430
    • /
    • 2006
  • In this study, the probability density functions (PDFs) of the rainfall generated by PRPM(Poisson Rectangular Pulse Model) and the runoff simulated by SLRM(Single Linear Reservoir Model) and Nash model, were compared to find out the changes of runoff characteristics due to the change of rainfall characteristics. Effect of rainfall frequency, Intensity, and duration on runoff were evaluated using the PDFs derived. Two basin, small and midium-sized ones, were also selected to find out the effect of basin size. As the results, we found that the arrival time, the intensity, and the duration of rainfall differently influence the runoff characteristics, which could be applied to evaluate the effect of climate change.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

The Study to Derive Empirical Formula of Rainfall Intencity in Korea (한국에 있어서 강우강도의 효과에 관한 연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.2
    • /
    • pp.1644-1650
    • /
    • 1969
  • In the design of general hydrological structures, it is well know that the design flood is of importance in the design of those structures. As the design flood is estimated using the design storm, the design storm is defined by the rainfall intensity itself. Though I had studied and reported many times the reports about the rainfall-intensity in my country, poorly I did not study the long-period variation of the intensity through each section in my country before. But now, in the basin area of the Han river and the Keum river, the self-recorded rainfall charts of the single storms, which are mostly above rainfall amount of 30mm and data of about 4500 with the 150 stationyear, were analyzed, And then, the intensity formula of the hourly unit is estimated using the period from 10 minutes to 5 days. The method to analyze and estimate them, and the final results will be summarized as mentioned below: (i) At first I intended to select out the homogeneous watersheds of three, one in the Han river and two in the Keum river. But I would select the northern and the sourthern river basins, and westward from Koan station, in the basins of the Han river. Also I would select the upstream area, and the downstream area including the watershed of Chungioo, Kongjoo, Chupungryung, and the Mt. Sock, in the basins of the Keum river. Finally, I could find that there couldn't in the Keum river basin. So, I decided out and analyze only river basins of the Han river with limitation mentioned above. (ii) The statistical method to select out the homogenous watersheds is the test of homogeneous variance, and it is estimated from the following equation: $$X_{k1}^2=[{\Sigma}(n_i-1)log\bar{S^2}-\Sigma(n_i-1)log\bar{S^2}]{\times}loge$$ (iii) Actually, each homogeneous watershed has individually its own intensity formula, But I would express them as the actual amount, because the equation of intensity variance is experiential and theoretical equation of the variance. Therefore the caluating equation is actually more convenient in the actual uses. (iv) This report is one of the series for me to give the basis to the actual designs. The cost for this study is provided by the Ministry of Construction. And the designs of the hydrological structures in the watersheds with limitation mentioned above may be concerned with and based upon this report.

  • PDF