• Title/Summary/Keyword: intelligent walking

Search Result 181, Processing Time 0.024 seconds

Effects of Smartphone Usage on Walking Speed using Machine Learning Method (기계학습을 이용한 스마트폰 이용이 보행속도에 미치는 영향 분석)

  • Jin, Hye ryun;Do, Myung sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • This study analyzed the impact of smartphone usage on walking speed during walking on two pedestrian walkways in Daejeon Metropolitan City. For the analysis, the video data about the actual use of smartphone was acquired and the walking speed was calculated based on the walking density of the pedestrian Level Of Service(LOS) presented in the Road Capacity Manual. Multiple regression analysis and decision tree using machine learning were used to analyze the impact of smartphone usage on walking speed, and as the explanatory variables, gender, disable smartphone, use of smartphone using auditory function, use of smartphone using visual function, LOS A, LOS B, LOS C were adopted. The result showed that LOS C had the highest impact on walking speed change and the women's group using their visual function was founded to have the slowest walking speed in LOS C. In particular, the author found that walking speed significantly decreased in the case of use of visual function rather than listening to music or the hearing on the phone.

Intelligent walking of a biped robot using soft-computing method (소프트 컴퓨팅 기법을 이용한 이족 로봇의 지능적 보행)

  • Lee, Seon-Gu;Song, Hee-Jun;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.312-314
    • /
    • 2006
  • Researches on biped robot walking have been mostly focusing on walking on even surfaces. Therefore, robot walking has been only realized on pre-specified spaces with pre-specified movements according to the previous researches. In this paper a walking system for a biped robot using fuzzy system and neural networks to overcome those constraints. The system enables biped walking to be possible in various environments and with more complicated obstacels. For the purpose, a walking robot should recognize its surrounding environment and determine its movement. In the proposed system, a robot dynamically generates its walking trajectories of each joint by using neural networks when facing new obstacle such as stairs, and it maintains its walking stability by using closed loop fuzzy control system which manipulates the waist joints.

  • PDF

Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis (소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법)

  • Lee, Chang-Seok;Na, Doo-Young;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2010
  • In this paper we propose a low-power walking compensation method for biped robot based on consumption energy analysis. Firstly, basic walking motions that can reduce energy consumption of robot movements are implemented based on consumption energy analysis according to robot axes. We define knee bent motion as a basic walking motion. It can improve energy consumption and motion stability by lowering center of gravity of the biped robot. We analyze consumption energy of left and right leg of the robot using motor currents and propose a compensation method of walking motions to reduce unbalance of consumption energy between left leg and right leg. It can also improve energy consumption and walking stability of the robot. The proposed low-power compensation method based on consumption energy analysis is verified by walking experiments of a small biped robot with an embedded system.

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure (트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.347-352
    • /
    • 2012
  • This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.

Gait Phase Estimation Method Adaptable to Changes in Gait Speed on Level Ground and Stairs (평지 및 계단 환경에서 보행 속도 변화에 대응 가능한 웨어러블 로봇의 보행 위상 추정 방법)

  • Hobin Kim;Jongbok Lee;Sunwoo Kim;Inho Kee;Sangdo Kim;Shinsuk Park;Kanggeon Kim;Jongwon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2023
  • Due to the acceleration of an aging society, the need for lower limb exoskeletons to assist gait is increasing. And for use in daily life, it is essential to have technology that can accurately estimate gait phase even in the walking environment and walking speed of the wearer that changes frequently. In this paper, we implement an LSTM-based gait phase estimation learning model by collecting gait data according to changes in gait speed in outdoor level ground and stair environments. In addition, the results of the gait phase estimation error for each walking environment were compared after learning for both max hip extension (MHE) and max hip flexion (MHF), which are ground truth criteria in gait phase divided in previous studies. As a result, the average error rate of all walking environments using MHF reference data and MHE reference data was 2.97% and 4.36%, respectively, and the result of using MHF reference data was 1.39% lower than the result of using MHE reference data.

A Study on the Control Algorithm for Active Walking Aids by Using Torque Estimation (모터 토크 추정을 통한 능동형 보행보조기의 차량 제어 알고리즘 구현)

  • Kong, Jung-Shik;Lee, Bo-Hee;Lee, Eung-Hyuk;Choi, Heung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.181-188
    • /
    • 2010
  • This paper presents the control algorithm of active walking aids estimating external torque of the wheels from user's will. Nowadays, interest of the walking aids is increased according to the increase in population of elder and handicapped person. Although many walking aids are developed, most of walking aids don't have any actuators for its movement. However, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to precision control of walking will during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose control algorithm of walking aids by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Finally, walking aids are controlled by these data. Here, all the processes are verified by simulation.

Analysis of Gait Characteristics of Walking in Various Emotion Status (다양한 감정 상태에서의 보행 특징 분석)

  • Dang, Van Chien;Tran, Trung Tin;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.477-481
    • /
    • 2014
  • Human has various types of emotions which affect speculation, judgement, activity, and the like at the moment. Specifically, walking is also affected by emotions, because one's emotion status can be easily inferred by his or her walking style. The present research on biped walking with humanoid robots is mainly focused on stable walking irrespective of ground condition. For effective human-robot interaction, however, walking pattern needs to be changed depending on the emotion status of the robot. This paper provides analysis and comparison of gait experiment data for the men and women in four representative emotion states, i.e., joy, sorrow, ease, and anger, which was acquired by a gait analysis system. The data and analysis results provided in this paper will be referenced to emotional biped walking of a humanoid robot.

A Study on Pedestrian Priority Actuated Signal Control Considering Waiting Time for Walking and Pedestrian Stress (보행대기시간과 보행자스트레스를 고려한 보행자우선 감응신호 운영방안 연구)

  • Choi, Bongsoo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Since the operation of an reft-turn actuated signal driven mainly by vehicles may increase the waiting time for walking, this signal causes inconvenience or stress to pedestrians. Therefore, in this study, the change in waiting time for walking before and after the application of an reft-turn actuated signal and the stress on the pedestrians were investigated through a questionnaire. The investigation showed that the waiting time for walking increased by 37% during non-peak time. Also the waiting time for walking of 62.1% of pedestrians became longer and 78% of them were stressed because of it. Meanwhile, simulation(VISSIM) showed that the vehicle travel speed slightly decreased to 1.07km/h(a 2.5% decrease), and the average waiting time for walking decreased by 15.51sec(a 28% decrease) with a pedestrian priority actuated signal. Therefore, it is expected that the pedestrian priority actuated signal can reduce the waiting time for walking and relieve pedestrian stress.

Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground (이족보행로봇의 비평탄지형 보행 및 자세 안정화 알고리즘)

  • Kim Yong-Tae;Noh Su-Hee;Lee Hee-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2005
  • In the paper, we propose an intelligent walking algorithm of biped robot on the uneven ground and a posture stabilization algorithm against external forces. At first, the mechanics and the control system of biped robot that can walk on the uneven ground and stand external forces are designed. We propose obstacle hurdling, incline walking. and going-up stairs algorithm by using infrared sensors and FSR sensors. Also, posture stabilization algorithm against external forces is designed using FSR sensors. Infrared sensors ate used to detect the obstacles in the working environment and FSR sensors are used to obtain the ZMP of biped robot. The developed biped robot can be controlled by the remote control system using vision system and RF module. The experimental results show that the biped robot Performs obstacle avoidance, obstacle hurdling, walking on the inclined plane, and going up stairs using the proposed walking and stabilization algorithm.