• Title/Summary/Keyword: intelligent mobile robot

Search Result 457, Processing Time 0.03 seconds

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

A Study on Multi-Object Tracking Method using Color Clustering in ISpace (컬러 클러스터링 기법을 이용한 공간지능화의 다중이동물체 추척 기법)

  • Jin, Tae-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2179-2184
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper described appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic (최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘)

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.440-445
    • /
    • 2018
  • The work presented in this paper deals with a navigation problem for a multiple mobile robots in unknown dynamic environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. In order to guide the robots along collision-free paths to reach their goal positions, a navigation method based on a combination of primary strategies has been developed. Most of these strategies are achieved by means of fuzzy logic controllers, and are uniformly applied in every robot. In order to improve the performance of the proposed fuzzy logic, the genetic algorithms were used to evolve the membership functions and rules set of the fuzzy controller. The simulation experiments verified that the proposed method effectively addresses the navigation problem.

Collision-free Path Planning Using Genetic Algorithm (유전자 알고리즘을 이용한 충돌회피 경로계획)

  • Lee, Dong-Hwan;Zhao, Ran;Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.646-655
    • /
    • 2009
  • This paper presents a new search strategy based on models of evolution in order to solve the problem of collision-free robotic path planning. We designed the robot path planning method with genetic algorithm which has become a well-known technique for optimization, intelligent search. Considering the path points as genes in a chromosome will provide a number of possible solutions on a given map. In this case, path distances that each chromosome creates can be regarded as a fitness measure for the corresponding chromosome. The effectiveness of the proposed genetic algorithm in the path planning was demonstrated by simulation. The proposed search strategy is able to use multiple and static obstacles.

  • PDF

Moving Object Detection Using SURF and Label Cluster Update in Active Camera (SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출)

  • Jung, Yong-Han;Park, Eun-Soo;Lee, Hyung-Ho;Wang, De-Chang;Huh, Uk-Youl;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

Topological SLAM Based on Voronoi Diagram and Extended Kalman Filter

  • Choi, Chang-Hyuk;Song, Jae-Bok;Kim, Mun-Sang;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.174-179
    • /
    • 2003
  • Through the simultaneous localization and map building (SLAM) technique, a robot can create maps about its unknown environment while it continuously localizes its position. Grid maps and feature maps have been widely used for SLAM together with application of probability methods and POMDP (partially observed Markov decision process). But this approach based on grid maps suffers from enormous computational burden. Topological maps, however, have drawn more attention these days because they are compact, provide natural interfaces, and are easily applicable to path planning in comparison with grid maps. Some topological SLAM techniques like GVG (generalized Voronoi diagram) were introduced, but it enables the robot to decide only whether the current position is part of GVG branch or not in the GVG algorithm. In this paper, therefore, to overcome these problems, we present a method for updating a global topological map from the local topological maps. These local topological maps are created through a labeled Voronoi diagram algorithm from the local grid map built based on the sensor information at the current robot position. And the nodes of a local topological map can be utilized as the features of the environment because it is robust in light of visibility problem. The geometric information of the feature is applied to the extended Kalman filter and the SLAM in the indoor environment is accomplished. A series of simulations have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can be applied relatively well.

  • PDF

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

Verification of Modified Flocking Algorithm for Group Robot Control (집단 로봇 제어를 위한 수정된 플로킹 알고리즘의 시뮬레이션 검증)

  • Lee, Eun-Bok;Shin, Suk-Hoon;You, Yong-Jun;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • Top-down approach in the intelligent robot research has focused on the single object intelligence however, it has two weaknesses. One is that has a high cost and a long spending time of sensing, calculating and communications. The other is the difficulty of responding to react changes in the unpredictable environment. we propose the collective intelligence algorithm based on Bottom-up approach for improving these weaknesses and the applied agent model and verify by simulation. The Modified Flocking Algorithm proposed in this research is the algorithm which is modified version of the concept of the Flocking (Craig Reynolds) which is used to model the flocks, herds, and schools in the graphics or games, and simplified the operation of conventional Flocking algorithm to make it easy to apply for the number of group robots. We modeled the Boid agent and verified possibility collectivization of the Modified Flocking Algorithm by simulation. And We validated by the actual multiple mobile robot experiment.

Area-Based Q-learning Algorithm to Search Target Object of Multiple Robots (다수 로봇의 목표물 탐색을 위한 Area-Based Q-learning 알고리즘)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we present the area-based Q-learning to search a target object using multiple robot. To search the target in Markovian space, the robots should recognize their surrounding at where they are located and generate some rules to act upon by themselves. Under area-based Q-learning, a robot, first of all, obtains 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to search for a target object while navigating in a unknown hallway where some obstacles were placed. In the end of this paper, we presents the results of three algorithms - a random search, area-based action making (ABAM), and hexagonal area-based Q-teaming.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적을 통한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tak, Han-Ho;Lee, In-Yong;Lee, Jun-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.415-418
    • /
    • 2007
  • 가까운 미래에 인간생활에 활용될 지능형 로봇은 인간과 공존하면서도 효과적으로 인간을 도와줄 수 있는 인간친화형 로봇이라 할 수 있다. 이러한 것을 실현하기 위해서 로봇은 미지의 환경 내에서 자신의 위치 및 방향을 인식해야 할 필요가 있다. 더욱이, 이것은 일상생활에서 자연스럽게 이뤄지는 것이 당연하다. 로봇을 제어하는 가장 중요한 문제중의 하나로서 이동로봇의 주행에서의 위치불확실성을 해결함으로서 로봇의 위치를 추정하는 것이 바람직하다 할 수 있다. 본 논문에서는 실내외 공간에서 인간을 포한함 이동물체의 영상정보를 이용하여 이동로봇의 자기위치를 인식하기 위한 방법을 제시하고 있다. 제시한 방법은 로봇자체의 DR센서 정보와 카메라에서 얻은 영상정보로부터 로봇의 위치추정방법을 결합 한 것이다. 그리고 이동물체의 이전 위치정보와 관측 카메라의 모델을 사용하여 이동물체에 대한 영상프레임 좌표와 추정된 로봇위치 간의 관계를 표현할 수 있는 식을 제시하고 있다. 또한 이동하는 인간과 로봇의 위치와 방향을 추정하기 위한 제어방법을 제시하고 이동로봇의 위치를 추정하기위해서 칼만필터 방법을 적용하였다. 그리고 시뮬레이션 및 실험을 통하여 제시한 방법을 검증하였다.

  • PDF