• Title/Summary/Keyword: intelligent manufacturing system

Search Result 363, Processing Time 0.023 seconds

Design of Three-Finger Hand System (3핑거 핸드 시스템 설계)

  • Thu, Le Xuan;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.71-76
    • /
    • 2008
  • The focus of this paper is the designing a flexible three fingered hand system with 16 D.O.F for dynamic manipulation with an intelligent controller, and to build a useful database for dynamic manipulation based on the experimental results. The weight of the hand module is only 0.7 kg, but flexible motion and powerful grasping are possible. To achieve such a dynamic motion in a robotic hand, we have developed a flexible fingered hand with a control system incorporating image recognition system in which we deal with the problems of not only accuracy and range of motion but also the flexibility of hand. The fingers are arranged so as to grasp both circular and prismatic objects. In order to achieve the light mechanism, we reduced the number of joints and fingers as much as possible. We used three fingers, which is the minimum number to achieve a stable grasp.

Configuration Design of a Train Bogie using Functional Decomposition and TRIZ Theory (기능분해와 TRIZ 이론을 이용한 철도 대차의 구성설계)

  • Lee, Jangyong;Han, Soonhung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • The configuration design of a mechanical product can be efficiently performed when it is based on the functional modeling. There are methodologies, which decompose function from the abstract level to the concrete level and match the functions to physical parts. But it is difficult to carry out an innovative design when the function is matched only to a pre-detined part. This paper describes the configuration design process of a mechanical product with a design expert system, which uses function taxonomy and TRIZ theory. The expert system can propose a functional modeling of a new part. which is not in the existing parts list. The abstraction levels of design knowledge are introduced, which describe the operation of mechanical product in the levels of abstraction. This is the theoretical background of using knowledge of function and TRIZ for configuration design. The expert system is adequate to control this design knowledge. which expresses knowledge of functional modeling, mapping rules between functions and parts, selection of parts, and TRIZ theory. The hierarchy of functions and machine parts are properly expressed by classes and objects in the expert system. A design expert system has been implemented for the configuration design of a train bogie, and a new brake system of the bogie is introduced with the aid of TRIZ's 30 function groups.

A Wide Speed Operation of SRM Using Low Cost Encoder and Controller

  • Lee, young-Jin;Prak, Sung-Jun;Park, Han-Woong;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • In switched reluctance motor(SRM) deives, the turn-on and turn-off angles of each phase switch should be accurately controlled for accuracy and efficiency. The accuracy of the switching angles is mainly dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to implement a control algorithm of the SRM, respectively. Thus, the higher the speed of the SRM is increased, the larger the amount of the switching angle deviations are from preset turn-on and turn-off angles. Consequently, the motor can not be driven stably high speed region. There fore, a simples and low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using a simple digital logic circuit is also presented for a wide speed range operation.

  • PDF

A study on production and distribution planning problems using hybrid genetic algorithm (유전 알고리즘을 이용한 생산 및 분배 계획)

  • 정성원;장양자;박진우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.133-141
    • /
    • 2001
  • Rapid development in computer and network technology these days has created in environment in which decisions for manufacturing companies can be made in a much broader perspective. Especially, better decisions on production and distribution planning(PDP) problems can be made laking advantage of real time information from all the parties concerned. However, since the PDP problem-a core part of the supply chain management- is known to be the so-called NP-hard problem, so heuristic methods are dominantly used to find out solutions in a reasonable time. As one of those heuristic techniques, many previous studios considered genetic a1gorithms. A standard genetic a1gorithm applies rules of reproduction, gene crossover, and mutation to the pseudo-organisms so the organisms can pass along beneficial and survival-enhancing trails to a new generation. When it comes to representing a chromosome on the problem, it is hard to guarantee an evolution of solutions through classic a1gorithm operations alone, for there exists a strong epitasis among genes. To resolve this problem, we propose a hybrid genetic a1gorithm based on Silver-Meal heuristic. Using IMS-TB(Intelligent Manufacturing System Test-bed) problem sets. the good performance of the proposed a1gorithm is demonstrated.

  • PDF

Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot (메카넘휠 기반의 전방향 이동로봇 주행성능 평가)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

A Study on Light Quality of LED for Control of Light Intensity (광 강도 제어에 따른 LED의 광질에 관한 연구)

  • Park, Sang-Hee;An, Jun-Chul;Heo, Jung-Wook;Choi, Han-Ko;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.175-182
    • /
    • 2012
  • Light characteristics of the monochromatic red(R), blue(B), green(G) and white(W) and the mixed LED (B-R LED) were investigated by light control a Spectrometer-MMS1 and an illuminometer. The power consumption of each LED was 1W and R LED has five wavelength bands(600nm, 640nm, 660nm, 680nm, 750nm). The light intensity of each LED was changed in a range 10~100%. As a results, the wavelength and the spectrum distribution of R LED increase with increasing light intensity but the wavelength of B, G, W LED decreases. It was found that illumination of each mononochromatic and B-R LED increases linearly with increasing light intensity. It was confirmed that the illumination intensity of R-B light has greater values than those obtained by monochromatic light at the same conditions.

A Study on Performance Improvement of Multi-stage Pump Applying CFD Analysis Technique (CFD해석기법을 적용한 다단펌프 성능향상에 관한 연구)

  • Kim, Sang-Yu;Kim, Jae-Yeol;GAO, JIACHEN
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.70-76
    • /
    • 2022
  • Recently, the demand for ultra-precision processing has increased owing to the increase in the demand for high-performance ultra-precision optical parts in the fields of information technology (IT), bio, healthcare, aerospace, and future automobiles. In this study, a performance improvement of a multi-stage pump was achieved by improving the pump casing structure rather than using the existing performance improvement method. To verify the performance improvement, the CFD analysis reliability of the existing pump, Pump A, was verified using the FLUENT app in the analysis software ANSYS, and the pump casing was improved through the verified CFD analysis of Pump B. Therefore, we want to analyze the performance improvement.

Multi-Agent based Negotiation Support Systems for Order based Manufacturer (제조업체의 주문거래 자동화를 위한 멀티에이전트 기반 협상지원시스템)

  • 최형림;김현수;박영재;박병주;박용성
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.1-21
    • /
    • 2003
  • In this research, we developed a Multi-Agent based Negotiation Support System to be able to increase the competitive power of a company in dynamic environment and correspond to various orders of customers by diffusion of electronic commerce. The system uses the agent technology that is being embossed as new paradigm in dynamic environment and flexible system framework. The multi-agent technology is used to solve these problems through cooperation of agent. The system consists of six sub agents: Mediator, manufacturability Analysis Agent, Process Planning Agent, Scheduling Agent, Selection Agent, Negotiation-strategy Building Agent. In this paper, the proposed Multi-Agent based Negotiation Support System takes aim at the automation of transaction process from ordering to manufacturing plan through the automation of negotiation that is the most important in order-taking transaction.

  • PDF

Unmanned Water Treatment System Based on Five Senses Technology to Cope with Overloading of Customized Smart Water Grid Machines (스마트워터그리드 맞춤형 기계과부하시 오감기술을 이용한 무인 수처리 시스템에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Jung, Yoon-Soo;Ahn, Tae-Hyoung;Lee, Hak-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.69-80
    • /
    • 2017
  • In or To use, manage, and preserve sustainable water resources for the current and future generations amid the threat of abnormal climate, it is necessary to establish a smart water grid system, the next-generation intelligent water management system. In this study, sensors, which make use of the five senses to watch, listen, and detect machine vibration, bearing temperature, machine operation sounds, current, voltage, and other symptoms that cannot be verified when the irrigation facilities are running, are used to establish various decision-making criteria appropriate to on-site situations. Based on such criteria, the unmanned conditions in the facilities were verified and analyzed. Existing technologies require on-site workers to check any defects caused by overloading of machines, which is the biggest constraining factor in the application of an unmanned control system for irrigation facilities. The new technology proposed in this study, on the other hand, allows for the unmanned analysis of the existence of machine vibration. This controls the decision-making process of any defect based on the analysis results, and necessary measures are taken automatically, resulting in improved reliability of the unmanned automation.