• Title/Summary/Keyword: intelligent input estimation

Search Result 74, Processing Time 0.022 seconds

A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System (Mirror Neuron System 계산 모델을 이용한 모방학습 기반 인간-로봇 인터페이스에 관한 연구)

  • Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.565-570
    • /
    • 2013
  • The mirror neuron regions which are distributed in cortical area handled a functionality of intention recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper an automated intention recognition system is proposed by applying computational model of mirror neuron system to the human-robot interaction system. The computational model of mirror neuron system is designed by using dynamic neural networks which have model input which includes sequential feature vector set from the behaviors from the target object and actor and produce results as a form of motor data which can be used to perform the corresponding intentional action through the imitative learning and estimation procedures of the proposed computational model. The intention recognition framework is designed by a system which has a model input from KINECT sensor and has a model output by calculating the corresponding motor data within a virtual robot simulation environment on the basis of intention-related scenario with the limited experimental space and specified target object.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

Protocol Conformance Testing of INAP Protocol in SDL (SDL을 사용한 INAP 프로토콜 시험)

  • 도현숙;조준모;김성운
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.1
    • /
    • pp.109-119
    • /
    • 1998
  • This paper describes a research result on automatic generation of Abstract Test Suite from INAP protocol in formal specifications by applying many existing related algorithms such as Rural Chinese Postman Tour and UIO sequence concepts. We use the I/O FSM generated from SDL specifications and a characterizing sequence concepts. We use the I/O FSM generated from SDL specifications and a characterizing sequence, called UIO sequence, is defined for the I/O FSM. The UIO sequence is combined with the concept of Rural Chinese Postman tour to obtain an optimal test sequence. It also proposes an estimation methodology of the fault courage for the Test Suite obtained by our method and their translation into the standardized test notation TTCN.

  • PDF

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Efficient Self-supervised Learning Techniques for Lightweight Depth Completion (경량 깊이완성기술을 위한 효율적인 자기지도학습 기법 연구)

  • Park, Jae-Hyuck;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.313-330
    • /
    • 2021
  • In an autonomous driving system equipped with a camera and lidar, depth completion techniques enable dense depth estimation. In particular, using self-supervised learning it is possible to train the depth completion network even without ground truth. In actual autonomous driving, such depth completion should have very short latency as it is the input of other algorithms. So, rather than complicate the network structure to increase the accuracy like previous studies, this paper focuses on network latency. We design a U-Net type network with RegNet encoders optimized for GPU computation. Instead, this paper presents several techniques that can increase accuracy during the process of self-supervised learning. The proposed techniques increase the robustness to unreliable lidar inputs. Also, they improve the depth quality for edge and sky regions based on the semantic information extracted in advance. Our experiments confirm that our model is very lightweight (2.42 ms at 1280x480) but resistant to noise and has qualities close to the latest studies.

A New Height Estimation Scheme Using Geometric Information of Stereo Camera based on Pan/tilt control (팬/틸트 제어기반의 스데레오 카메라의 기하학적 정보를 이용한 새로운 높이 추정기법)

  • Ko Jung-Hwan;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.156-165
    • /
    • 2006
  • In this paper, a new intelligent moving target tracking and surveillance system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and phase-type correlation scheme and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time. Basing on these extracted data the pan/tilted-imbedded stereo camera system is adaptively controlled and as a result, the proposed system can track the target adaptively under the various circumstance of the target. From some experiments using 480 frames of the test input stereo image, it is analyzed that a standard variation between the measured and computed the estimated target's height and an error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 1.03 and 1.18$\%$ on average, respectively. From these good experimental results a possibility of implementing a new real-time intelligent stereo target tracking and surveillance system using the proposed scheme is finally suggested.

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Neuro-Fuzzy Modeling based on Self-Organizing Clustering (자기구성 클러스터링 기반 뉴로-퍼지 모델링)

  • Kim Sung-Suk;Ryu Jeong-Woong;Kim Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.688-694
    • /
    • 2005
  • In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.