• Title/Summary/Keyword: intelligent information technology(Artificial Intelligence, AI)

Search Result 84, Processing Time 0.024 seconds

Virtual Human Authoring ToolKit for a Senior Citizen Living Alone (독거노인용 가상 휴먼 제작 툴킷)

  • Shin, Eunji;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1245-1248
    • /
    • 2020
  • Elderly people living alone need smart care for independent living. Recent advances in artificial intelligence have allowed for easier interaction by a computer-controlled virtual human. This technology can realize services such as medicine intake guide for the elderly living alone. In this paper, we suggest an intelligent virtual human and present our virtual human toolkit for controlling virtual humans for a senior citizen living alone. To make the virtual human motion, we suggest our authoring toolkit to map gestures, emotions, voices of virtual humans. The toolkit configured to create virtual human interactions allows the response of a suitable virtual human with facial expressions, gestures, and voice.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

Is ChatGPT an Ally or an Enemy? Its Impact on Society Based on a Systematic Literature Review

  • Juliana Basulo-Ribeiro;Leonor Teixeira
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The new AI based conversational chatbot, ChatGPT, launched in November 2022, is causing a stir. There are many opinions about this being a 'threat or a promise,' and thus it is important to understand what has been said about this tool and, based on the growing literature that has emerged on the subject, demystify its effective impact on society. To analyse this impact, a systematic literature review with the support of the preferred reporting items for systematic reviews and meta-analysis protocol was used. The data, scientific documents, were collected using the main scientific databases - SCOPUS and Web of Science - and the results were presented based on a bibliometric and thematic exploration of content. The main findings indicate that people are increasingly using this chatbot in more diverse areas. Therefore, this study contributes at the practical level, aiming to enlighten people in general - both in professional and personal life - about this tool and its impacts. Also, it contributes at the theoretical level, which involves expanding understanding and elucidation of the impacts of ChatGPT in different areas of study.

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance (해안 경계 지능화를 위한 AI학습 모델 구축 방안)

  • Han, Changhee;Kim, Jong-Hwan;Cha, Jinho;Lee, Jongkwan;Jung, Yunyoung;Park, Jinseon;Kim, Youngtaek;Kim, Youngchan;Ha, Jeeseung;Lee, Kanguk;Kim, Yoonsung;Bang, Sungwan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • The Republic of Korea is a country in which coastal surveillance is an imperative national task as it is surrounded by seas on three sides under the confrontation between South and North Korea. However, due to Defense Reform 2.0, the number of R/D (Radar) operating personnel has decreased, and the period of service has also been shortened. Moreover, there is always a possibility that a human error will occur. This paper presents specific guidelines for developing an AI learning model for the intelligent coastal surveillance system. We present a three-step strategy to realize the guidelines. The first stage is a typical stage of building an AI learning model, including data collection, storage, filtering, purification, and data transformation. In the second stage, R/D signal analysis is first performed. Subsequently, AI learning model development for classifying real and false images, coastal area analysis, and vulnerable area/time analysis are performed. In the final stage, validation, visualization, and demonstration of the AI learning model are performed. Through this research, the first achievement of making the existing weapon system intelligent by applying the application of AI technology was achieved.

A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution (4차 산업혁명시대 인공지능 정책의사결정에 대한 탐색적 논의)

  • Seo, Hyung-Jun
    • Informatization Policy
    • /
    • v.26 no.3
    • /
    • pp.3-35
    • /
    • 2019
  • In the fourth industrial revolution age, because of advance in the intelligence information technologies, the various roles of AI have attracted public attention. Starting with Google's Alphago, AI is now no longer a fantasized technology but a real one that can bring ripple effect in entire society. Already, AI has performed well in the medical service, legal service, and the private sector's business decision making. This study conducted an exploratory analysis on the possibilities and issues of AI-driven policy decision making in the public sector. The three research purposes are i) could AI make a policy decision in public sector?; ii) how different is AI-driven policy decision making compared to the existing methods of decision making?; and iii) what issues would be revealed by AI's policy decision making? AI-driven policy decision making is differentiated from the traditional ways of decision making in that the former is represented by rationality based on sufficient amount of information and alternatives, increased transparency and trust, more objective views for policy issues, and faster decision making process. However, there are several controversial issues regarding superiority of AI, ethics, accountability, changes in democracy, substitution of human labor in the public sector, and data usage problems for AI. Since the adoption of AI for policy decision making will be soon realized, it is necessary to take an integrative approach, considering both the positive and adverse effects, to minimize social impact.

Appeared In a Domestic YouTube Video A Study on Makeup Characteristics According to Emotional Emages

  • Na-Hyun, An
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • While technologies such as the 4th revolution and artificial intelligence (AI), which create new value through the convergence of intelligent information technology, are becoming hot topics, the beauty industry is rapidly developing and combining information and communication technology to produce beauty items based on smartphones among mobile technologies. As the area of expands, YouTube is forming a network through various means of information. In particular, beauty-related YouTube videos are a field of great interest and popularity among the public. By classifying the makeup characteristics according to the emotional images shown in domestic YouTube videos by emotional image and identifying the characteristics of makeup, the needs for watching YouTube makeup videos are identified. We aim to build trust in the delivery of information about makeup. The emotional images were divided into four types: 'modern', 'natural', 'gorgeous', and cute. Among the domestic makeup YouTubers, Pony, Isabe and Shinnim, Lamuque were selected. By organizing more diverse makeup-related content systematically and creatively, we expect to have a positive influence on k-makeup not only domestically but also overseas. We aim to provide basic data for follow-up research on makeup YouTuber videos in the field of cosmetology and contribute to marketing plans for the development of the beauty content industry and establishment of promotional strategies.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

A Review of Intelligent Society Studies: A look on the future of AI and policy issues. (지능정보시대의 전망과 정책대응 방향 모색)

  • Sung, Wook-Joon;Hwang, Sungsoo
    • Informatization Policy
    • /
    • v.24 no.2
    • /
    • pp.3-19
    • /
    • 2017
  • This article examines the issues around the coming age of artificial intelligence and the 4th industrial revolution. First, this articles addresses the changes we will encounter with the advance of innovative technologies. Changes in future jobs, education, travel and other lifestyle issues are discussed and responses of a few countries(governments) regarding preparations for such future changes are illustrated. To sum up, three dimensions - sustainable technology development, legal and policy-related establishments, and consensus building among the public - are identified as areas to focus on for the future. Particularly, it is advised that the Korean government apply and utilize new technologies to solve public issues and problems, particularly the newly-emerging "urban renewal" and "smart city" issues.

Global Technical Knowledge Flow Analysis in Intelligent Information Technology : Focusing on South Korea (지능정보기술 분야에서의 글로벌 기술 지식 경쟁력 분석 : 한국을 중심으로)

  • Kwak, Gihyun;Yoon, Jungsub
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.24-38
    • /
    • 2021
  • This study aims to measure Korea's global competitiveness in intelligent information technology, which is the core technology of the 4th industrial revolution. For analysis, we collect patents of each field and prior patents cited by them, which are applied at the U.S. Patent Office (USPTO) between 2010 and 2018 from PATSTAT Online. A global knowledge transfer network was established by grouping citing- and cited-relationships at a national level. The in-degree centrality is used to evaluate technology acceptance, which indicates the process of absorbing existing technological knowledge to create new knowledge in each field. Second, to evaluate the impact of existing technological knowledge on the creation of new one, the out-degree centrality is investigated. Third, we apply the PageRank algorithm to qualitatively and quantitatively investigate the importance of the relationships between countries. As a result, it is confirmed through all the indicators that the AI sector is currently the least competitive.