• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.021 seconds

A Detection Model using Labeling based on Inference and Unsupervised Learning Method (추론 및 비교사학습 기법 기반 레이블링을 적용한 탐지 모델)

  • Hong, Sung-Sam;Kim, Dong-Wook;Kim, Byungik;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • The Detection Model is the model to find the result of a certain purpose using artificial intelligent, data mining, intelligent algorithms In Cyber Security, it usually uses to detect intrusion, malwares, cyber incident, and attacks etc. There are an amount of unlabeled data that are collected in a real environment such as security data. Since the most of data are not defined the class labels, it is difficult to know type of data. Therefore, the label determination process is required to detect and analysis with accuracy. In this paper, we proposed a KDFL(K-means and D-S Fusion based Labeling) method using D-S inference and k-means(unsupervised) algorithms to decide label of data records by fusion, and a detection model architecture using a proposed labeling method. A proposed method has shown better performance on detection rate, accuracy, F1-measure index than other methods. In addition, since it has shown the improved results in error rate, we have verified good performance of our proposed method.

A Study on Chaff Echo Detection using AdaBoost Algorithm and Radar Data (AdaBoost 알고리즘과 레이더 데이터를 이용한 채프에코 식별에 관한 연구)

  • Lee, Hansoo;Kim, Jonggeun;Yu, Jungwon;Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • In pattern recognition field, data classification is an essential process for extracting meaningful information from data. Adaptive boosting algorithm, known as AdaBoost algorithm, is a kind of improved boosting algorithm for applying to real data analysis. It consists of weak classifiers, such as random guessing or random forest, which performance is slightly more than 50% and weights for combining the classifiers. And a strong classifier is created with the weak classifiers and the weights. In this paper, a research is performed using AdaBoost algorithm for detecting chaff echo which has similar characteristics to precipitation echo and interrupts weather forecasting. The entire process for implementing chaff echo classifier starts spatial and temporal clustering based on similarity with weather radar data. With them, learning data set is prepared that separated chaff echo and non-chaff echo, and the AdaBoost classifier is generated as a result. For verifying the classifier, actual chaff echo appearance case is applied, and it is confirmed that the classifier can distinguish chaff echo efficiently.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Categorization of POIs Using Word and Context information (관심 지점 명칭의 단어와 문맥 정보를 활용한 관심 지점의 분류)

  • Choi, Su Jeong;Park, Seong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.470-476
    • /
    • 2014
  • A point of interest is a specific point location such as a cafe, a gallery, a shop, or a park. It consists of a name, a category, a location, and so on. Its information is necessary for location-based application, above all category is basic information. However, category information should be automatically gathered because it costs high to gather it manually. In this paper, we propose a novel method to estimate category of POIs automatically using an inner word and local context. An inner word is a word that contains POI's name. Their name sometimes expose category information. Thus, their name is used as inner word information in estimating category of POIs. Local context information means words around a POI's name in a document that mentioned the name. The context include information to estimate category. The evaluation of the proposed method is performed on two data sets. According to the experimental results, proposed model using combination inner word and local context show higher accuracy than that of model using each.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Algorithm of Analysing Electric Power Signal for Home Electric Power Monitoring in Non-Intrusive Way (가정용 전력 모니터링을 위한 전력신호 분석 알고리즘 개발)

  • Park, Sung-Wook;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.679-685
    • /
    • 2011
  • This paper presents an algorithm identifying devices that generate observed mixed signals that are collected at main power-supply line. The proposed algorithm, which is necessary for low cost electric power monitoring system at appliance-level, that is non-intrusive load monitoring system, divides incoming mixed signal into multiple time intervals, calculating difference-signals between consecutive time interval, and identifies which device is operating at the time interval by analysing the difference-signals. Since the features of one device can remain when the time interval is short enough and the features are independent and additive, well-known classification algorithms can be used to classify the difference-signals with features of N individual devices, otherwise $2^N$ features might be necessary. The proposed algorithm was verified using data mixed in a laboratory with individual devices's data collected from field. When maximum 4 devices operate or stop sequentially and when features satisfy the requirements of proposed algorithm, the proposed algorithm resulted nearly 100% success rate under the constrained test condition. In order to apply the proposed algorithm in real world, the number devices shall increase, the time interval shall be smaller and the pattern of mixture shall be more diverse. However we can expect, if features used follow guidelines of proposed algorithm, future system could have certain level of performance without the guideline.

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow Based on the Concept of Short-term Displaced Flow (연속류도로 단기 적체 교통량 개념 기반 돌발상황 자동감지 알고리즘 개발)

  • Lee, Kyu-Soon;Shin, Chi-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.13-23
    • /
    • 2016
  • Many traffic centers are highly hesitant in employing existing Automatic Incident Detection Algorithms due to high false alarm rate, low detection rate, and enormous effort taken in maintaining algorithm parameters, together with complex algorithm structure and filtering/smoothing process. Concerns grow over the situation particularly in Freeway Incident Management Area This study proposes a new algorithm and introduces a novel concept, the Displaced Flow Index (DiFI) which is similar to a product of relative speed and relative occupancy for every execution period. The algorithm structure is very simple, also easy to understand with minimum parameters, and could use raw data without any additional pre-processing. To evaluate the performance of the DiFI algorithm, validation test on the algorithm has been conducted using detector data taken from Naebu Expressway in Seoul and following transferability tests with Gyeongbu Expressway detector data. Performance test has utilized many indices such as DR, FAR, MTTD (Mean Time To Detect), CR (Classification Rate), CI (Composite Index) and PI (Performance Index). It was found that the DR is up to 100%, the MTTD is a little over 1.0 minutes, and the FAR is as low as 2.99%. This newly designed algorithm seems promising and outperformed SAO and most popular AIDAs such as APID and DELOS, and showed the best performance in every category.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores (시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측)

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.155-170
    • /
    • 2018
  • Predicting a company's financial bankruptcy is traditionally one of the most crucial forecasting problems in business analytics. In previous studies, prediction models have been proposed by applying or combining statistical and machine learning-based techniques. In this paper, we propose a novel intelligent prediction model based on the simulated annealing which is one of the well-known optimization techniques. The simulated annealing is known to have comparable optimization performance to the genetic algorithms. Nevertheless, since there has been little research on the prediction and classification of business decision-making problems using the simulated annealing, it is meaningful to confirm the usefulness of the proposed model in business analytics. In this study, we use the combined model of simulated annealing and machine learning to select the input features of the bankruptcy prediction model. Typical types of combining optimization and machine learning techniques are feature selection, feature weighting, and instance selection. This study proposes a combining model for feature selection, which has been studied the most. In order to confirm the superiority of the proposed model in this study, we apply the real-world financial data of the Korean companies and analyze the results. The results show that the predictive accuracy of the proposed model is better than that of the naïve model. Notably, the performance is significantly improved as compared with the traditional decision tree, random forests, artificial neural network, SVM, and logistic regression analysis.