• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.024 seconds

An Evaluation of Applying Knowledge Base to Academic Information Service

  • Lee, Seok-Hyoung;Kim, Hwan-Min;Choe, Ho-Seop
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.3 no.1
    • /
    • pp.81-95
    • /
    • 2013
  • Through a series of precise text handling processes, including automatic extraction of information from documents with knowledge from various fields, recognition of entity names, detection of core topics, analysis of the relations between the extracted information and topics, and automatic inference of new knowledge, the most efficient knowledge base of the relevant field is created, and plans to apply these to the information knowledge management and service are the core requirements necessary for intellectualization of information. In this paper, the knowledge base, which is a necessary core resource and comprehensive technology for intellectualization of science and technology information, is described and the usability of academic information services using it is evaluated. The knowledge base proposed in this article is an amalgamation of information expression and knowledge storage, composed of identifying code systems from terms to documents, by integrating terminologies, word intelligent networks, topic networks, classification systems, and authority data.

Design and Implementation of Educational Newspaper Information Gathering Agent for NIE (NIE를 위한 교육 정보 수집 에이전트의 설계 및 구현)

  • Lee, Chul-Hwan;Han, Sun-Gwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.3 no.1
    • /
    • pp.169-176
    • /
    • 2000
  • This paper presents ENIG Agent can gather distributed educational newspaper information in the web as well as provide teachers and student those information for the NIE. ENIG Agent gleans newspaper headline of appropriate educational news portal site for real-time provision of those information. The optimized extraction of headline is performed through the pre-process of educational news site, information noise filtering, pattern matching. The educational newspaper headline information that is gotten through previous process will be shown to students by web-browser. To increase the usage of those information, intelligent education methods and visualized classification techniques are used. By experiment, the performance of this ENIG Agent was evaluated.

  • PDF

Toward Accurate Road Detection in Challenging Environments Using 3D Point Clouds

  • Byun, Jaemin;Seo, Beom-Su;Lee, Jihong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.606-616
    • /
    • 2015
  • In this paper, we propose a novel method for road recognition using 3D point clouds based on a Markov random field (MRF) framework in unstructured and complex road environments. The proposed method is focused on finding a solution for an analysis of traversable regions in challenging environments without considering an assumption that has been applied in many past studies; that is, that the surface of a road is ideally flat. The main contributions of this research are as follows: (a) guidelines for the best selection of the gradient value, the average height, the normal vectors, and the intensity value and (b) how to mathematically transform a road recognition problem into a classification problem that is based on MRF modeling in spatial and visual contexts. In our experiments, we used numerous scans acquired by an HDL-64E sensor mounted on an experimental vehicle. The results show that the proposed method is more robust and reliable than a conventional approach based on a quantity evaluation with ground truth data for a variety of challenging environments.

The Study to Upgrade Algorithm by Classification of Customers for Strategic Marketing Using Data-mining on Online Shopping Malls (데이터마이닝을 이용한 쇼핑몰에서 전략적 마케팅을 위한 고객세분화 알고리즘 향상에 관한 연구)

  • Lim, Chung-Hong;Kim, Je-Seok;Kim, Jang-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.495-498
    • /
    • 2005
  • The study is aimed at searching algorithm upgrading which can automatically compose goods displayed according to the degree of popularity regarding customer's requests, for the purpose of design of an intellectual shopping mall on the net and putting it into force by using classified technical Data-mining and statical analysis including personal information , entrance records and purchase records. This is for the study of strategic marketing. The system can automate the conventional shopping mall system by manual and personal judgements and also suggest a new formation of marketing techniques to strengthen the competition in B2B market which is steeply increasing.

  • PDF

Data-based On-line Diagnosis Using Multivariate Statistical Techniques (다변량 통계기법을 활용한 데이터기반 실시간 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.538-543
    • /
    • 2016
  • For a good product quality and plant safety, it is necessary to implement the on-line monitoring and diagnosis schemes of industrial processes. Combined with monitoring systems, reliable diagnosis schemes seek to find assignable causes of the process variables responsible for faults or special events in processes. This study deals with the real-time diagnosis of complicated industrial processes from the intelligent use of multivariate statistical techniques. The presented diagnosis scheme consists of a classification-based diagnosis using nonlinear representation and filtering of process data. A case study based on the simulation data was conducted, and the diagnosis results were obtained using different diagnosis schemes. In addition, the choice of future estimation methods was evaluated. The results showed that the performance of the presented scheme outperformed the other schemes.

An application of datamining approach to CQI using the discharge summary (퇴원요약 데이터베이스를 이용한 데이터마이닝 기법의 CQI 활동에의 황용 방안)

  • 선미옥;채영문;이해종;이선희;강성홍;호승희
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.289-299
    • /
    • 2000
  • This study provides an application of datamining approach to CQI(Continuous Quality Improvement) using the discharge summary. First, we found a process variation in hospital infection rate by SPC (Statistical Process Control) technique. Second, importance of factors influencing hospital infection was inferred through the decision tree analysis which is a classification method in data-mining approach. The most important factor was surgery followed by comorbidity and length of operation. Comorbidity was further divided into age and principal diagnosis and the length of operation was further divided into age and chief complaint. 24 rules of hospital infection were generated by the decision tree analysis. Of these, 9 rules with predictive prover greater than 50% were suggested as guidelines for hospital infection control. The optimum range of target group in hospital infection control were Identified through the information gain summary. Association rule, which is another kind of datamining method, was performed to analyze the relationship between principal diagnosis and comorbidity. The confidence score, which measures the decree of association, between urinary tract infection and causal bacillus was the highest, followed by the score between postoperative wound disruption find postoperative wound infection. This study demonstrated how datamining approach could be used to provide information to support prospective surveillance of hospital infection. The datamining technique can also be applied to various areas fur CQI using other hospital databases.

  • PDF

Internal Control Risk Assessment System Using CRAS-CBR

  • Hwang, Sung-Sik;Taeksoo Shin;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.338-346
    • /
    • 2003
  • Information Technology (IT) and the internet have been major drivers the changes in all aspects of the business processes and activities. They have brought major changes to the financial statements audit environment as well, which in turn has required modifications in audit procedures. There exist, however, certain difficulties with current audit procedures especially for the assessment of the level of control risk. This assessment is primarily based on the auditors' professional judgment and experiences, not based on the objective hies or criteria. To overcome these difficulties, this paper proposes a prototype decision support model named CRAS-CBR using case based reasoning (CBR) to support auditors in making their professional judgment on the assessment of the level of control risk of the general accounting system in the manufacturing industry. To validate the performance, we compare our proposed model with benchmark performances in terms of classification accuracy for the level of control risk. Our experimental results showed CRAS-CBR outperforms a statistical model (MDA) and staff auditor performance in average hit ratio.

  • PDF

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

  • Lin, Te-Yuan;Fuh, Chiou-Shann
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5654-5668
    • /
    • 2018
  • Driven by security and real-time demands of Internet of Things (IoT), the timing of fog computing and edge computing have gradually come into place. Gateways bear more nearby computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in between local devices and the remote cloud. In fog computing, the edge broker requires X-aware capabilities that combines software programmability, stream processing, hardware optimization and various connectivity to deal with such as security, data abstraction, network latency, service classification and workload allocation strategy. The prosperous of Field Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens data protection and resilience merits designed for industrial internet of things or highly privacy concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies rules into provable statements without knowing original sensitive data and guarantees privacy rules applied to the sensitive data before being propagated while preventing potential leakage threats. Some logical functions can be offloaded to any programmable micro-controller embedded to achieve higher computing efficiency.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.