• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.029 seconds

Learning for Environment and Behavior Pattern Using Recurrent Modular Neural Network Based on Estimated Emotion (감정평가에 기반한 환경과 행동패턴 학습을 위한 궤환 모듈라 네트워크)

  • Kim, Seong-Joo;Choi, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Rational sense is affected by emotion. If we add the factor of estimated emotion by environment information into robots, we may get more intelligent and human-friendly robots. However, various sensory information and pattern classification are prescribed for robots to learn emotion so that the networks are suitable for the necessity of robots. Neural network has superior ability to extract character of system but neural network has defect of temporal cross talk and local minimum convergence. To solve the defects, many kinds of modular neural networks have been proposed because they divide a complex problem into simple several subproblems. The modular neural network, introduced by Jacobs and Jordan, shows an excellent ability of recomposition and recombination of complex work. On the other hand, the recurrent network acquires state representations and representations of state make the recurrent neural network suitable for diverse applications such as nonlinear prediction and modeling. In this paper, we applied recurrent network for the expert network in the modular neural network structure to learn data pattern based on emotional assessment. To show the performance of the proposed network, simulation of learning the environment and behavior pattern is proceeded with the real time implementation. The given problem is very complex and has too many cases to learn. The result will show the performance and good ability of the proposed network and will be compared with the result of other method, general modular neural network.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

An Application of the Rough Set Approach to credit Rating

  • Kim, Jae-Kyeong;Cho, Sung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.347-354
    • /
    • 1999
  • The credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this paper, we present a new approach to credit rating of customers based on the rough set theory. The concept of a rough set appeared to be an effective tool for the analysis of customer information systems representing knowledge gained by experience. The customer information system describes a set of customers by a set of multi-valued attributes, called condition attributes. The customers are classified into groups of risk subject to an expert's opinion, called decision attribute. A natural problem of knowledge analysis consists then in discovering relationships, in terms of decision rules, between description of customers by condition attributes and particular decisions. The rough set approach enables one to discover minimal subsets of condition attributes ensuring an acceptable quality of classification of the customers analyzed and to derive decision rules from the customer information system which can be used to support decisions about rating new customers. Using the rough set approach one analyses only facts hidden in data, it does not need any additional information about data and does not correct inconsistencies manifested in data; instead, rules produced are categorized into certain and possible. A real problem of the evaluation of the evaluation of credit rating by a department store is studied using the rough set approach.

  • PDF

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

Vision Based Vehicle Detection and Traffic Parameter Extraction (비젼 기반 차량 검출 및 교통 파라미터 추출)

  • 하동문;이종민;김용득
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.610-620
    • /
    • 2003
  • Various shadows are one of main factors that cause errors in vision based vehicle detection. In this paper, two simple methods, land mark based method and BS & Edge method, are proposed for vehicle detection and shadow rejection. In the experiments, the accuracy of vehicle detection is higher than 96%, during which the shadows arisen from roadside buildings grew considerably. Based on these two methods, vehicle counting, tracking, classification, and speed estimation are achieved so that real-time traffic parameters concerning traffic flow can be extracted to describe the load of each lane.

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF

A Study on CALS/EC Classification Scheme & Characteristic Model Development (CALS/EC의 유형별 분류 및 특성모형 개발에 관한 연구)

  • 이국철;조선구
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.499-507
    • /
    • 1999
  • CALS/EC의 도입·활용은 생산 및 유통비용의 감축과 업무처리시간 단축 및 조직간 정보교환의 원활화를 통해 산업 및 국가경쟁력 향상에 기여하는 것으로 알려져 있다. 이제 제조업이나 서비스업을 막론하고 세계화의 추세에 맞춰 국제적으로 경쟁력을 갖춘 기업으로 성장하기 위해서는 CALS/EC의 도입이 필수적으로 요구되고 있다. 우리 나라와 같은 CALS/EC 후발국의 입장에서 볼 때, CALS/EC 도입 환경이 제대로 성숙되어 있지 못한 채 구체적인 도입 유형 및 방법론 등에 대한 연구가 취약하여 도입 관련 의사결정에 많은 어려움을 겪고 있는 실정이다. 결국 CALS/EC 도입 의사결정에 수반된 도입 목적의 파악 및 효과 측정방안, 대상요소기술의 선택, 적용 대상분야의 산정 등에 관한 구체적인 대안제시가 실무적으로 요구되고 있다. 본 연구는 위와 같은 문제점을 인식하고, CALS/EC 도입과 관련된 의사결정을 위한 기반연구를 수행함에 그 목적이 있다. 이를 위해 CALS/EC가 그 유형별로 고유한 특성이 존재한다는 전제하에 우선 CALS/EC의 유형별 분류체계 정립을 시도하였으며 각 유형의 차별성을 부각하는 유형별 특성 모형을 개발 제시하였다. 다만 본 연구의 결과물을 근거로 수립될 구체적인 유형별 도입방법 및 절차는 후속연구에서도 다루기로 한다.

  • PDF

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • Jang, Yeong-Sik;Kim, Jong-U;Heo, Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF