• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.028 seconds

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • Lee, Jae-Sik;Lee, Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

A Hardware/Software Codesign for Image Processing in a Processor Based Embedded System for Vehicle Detection

  • Moon, Ho-Sun;Moon, Sung-Hwan;Seo, Young-Bin;Kim, Yong-Deak
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.27-31
    • /
    • 2005
  • Vehicle detector system based on image processing technology is a significant domain of ITS (Intelligent Transportation System) applications due to its advantages such as low installation cost and it does not obstruct traffic during the installation of vehicle detection systems on the road[1]. In this paper, we propose architecture for vehicle detection by using image processing. The architecture consists of two main parts such as an image processing part, using high speed FPGA, decision and calculation part using CPU. The CPU part takes care of total system control and synthetic decision of vehicle detection. The FPGA part assumes charge of input and output image using video encoder and decoder, image classification and image memory control.

데이터마이닝 기법을 활용한 스팸메일 분류 및 예측모형 구축에 관한 연구

  • 안수산;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.359-366
    • /
    • 2000
  • 기업의 환경에서 이-메일(e-mail)은 회사내의 업무흐름을 완전히 뒤바꾸며 혁명적인 변화를 이끌고 있다. 업무 공간의 극복, 사내 커뮤니케이션의 극대화 등 이-메일이 제공하는 장점이 매우 많다. 그러나 최근 사회적 문제가 되고 있는 스팸 메일(spam mail)의 등장은 이러한 장점의 커다란 반대급부를 제공한다. 스팸메일이란 인터넷이용자들에게 원하지도 않았는데 무작위로 발송되는 광고성 이-메일을 일컫는 말로, 벌크(bulk)메일, 정크(junk)메일, 언솔리시티드(Unsolicited)메일과도 유사한 의미로 사용된다. 스팸메일은 사용자들로 하여금 스트레쓰의 요인이 되게 함은 물론, 이를 발신하고 수신하는 과정에서 이용되는 서버에 엄청난 부하를 줄 뿐만 아니라, 공공의 성격을 지니는 네트웍 자원을 아무런 비용의 지불 없이 독점하게 되는 좋지 않은 결과를 가져오게 된다. 본 연구에서는 데이터마이닝의 기법 중 분류(classification tack) 문제에 적웅이 활발한 인공신경망 (artificial neural networks)과 의사결정나무(decision tree)기법을 이용하여 스팸메일의 분류와 예측을 가능케 하는 모형을 구축한다.

  • PDF

Coordination Model for Multi Agent System using Neural Networks in Supply Chain (공급망에서 신경망을 이용한 멀티에이전트 기반 협동 모델)

  • 이건수;김윈일;김민구
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.264-273
    • /
    • 2003
  • 인터넷의 발달로 전자 상거래는 오늘날 일상생활의 한 부분이 되었다. 그러나, 수많은 쇼핑몰들과 그 쇼핑몰들이 제공하는 다양한 제품들 속에서 소비자가 원하는 물건을 찾아내는 것은 점점 많은 시간과 노력이 필요하게 되었다. 본 논문에서는 멀티에이전트 시스템을 이용해 공급망(Supply Chain)에서 구매자의 요구에 부합하는 제품을 제공할 수 있는 생산자를 보다 쉽게 연결시켜주는 방법을 제안한다. 기존의 멀티 에이전트 기반 공급망에서 주로 사용되는 협동 전략인 Joint Intention Theory와 SharedPlan Theory, 이 논문에서 제안하는 신경망을 이용한 방법을 비교해, 신경망을 이용한 방법이 갖는 효율성을 알아보고, 신경망을 이용한 멀티에이전트 기반의 협등 모델을 제시하였다. 이 모델은 구매자가 제품을 선택할 때 사용하는 소비평가 기준의 가중치를 소비자로부터 받아들여 그 기준에 가장 부합하는 판매자를 신경망을 이용한 분류(classification)방법을 통해 찾아내고, 이렇게 선택된 생산자를 소비자에게 연결시켜준다.

  • PDF

Speech Emotion Recognition by Speech Signals on a Simulated Intelligent Robot (모의 지능로봇에서 음성신호에 의한 감정인식)

  • Jang, Kwang-Dong;Kwon, Oh-Wook
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.163-166
    • /
    • 2005
  • We propose a speech emotion recognition method for natural human-robot interface. In the proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes pitch, jitter, duration, and rate of speech. Finally a patten classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5different directions. Experimental results show that the proposed method yields 59% classification accuracy while human classifiers give about 50%accuracy, which confirms that the proposed method achieves performance comparable to a human.

  • PDF

Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?

  • Hwang, Youngbae;Park, Junseok;Lim, Yun Jeong;Chun, Hoon Jai
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.547-551
    • /
    • 2018
  • Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning-based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning-based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.

Intelligent User Pattern Recognition based on Vision, Audio and Activity for Abnormal Event Detections of Single Households

  • Jung, Ju-Ho;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.59-66
    • /
    • 2019
  • According to the KT telecommunication statistics, people stayed inside their houses on an average of 11.9 hours a day. As well as, according to NSC statistics in the united states, people regardless of age are injured for a variety of reasons in their houses. For purposes of this research, we have investigated an abnormal event detection algorithm to classify infrequently occurring behaviors as accidents, health emergencies, etc. in their daily lives. We propose a fusion method that combines three classification algorithms with vision pattern, audio pattern, and activity pattern to detect unusual user events. The vision pattern algorithm identifies people and objects based on video data collected through home CCTV. The audio and activity pattern algorithms classify user audio and activity behaviors using the data collected from built-in sensors on their smartphones in their houses. We evaluated the proposed individual pattern algorithm and fusion method based on multiple scenarios.

A Study of optimized clustering method based on SOM for CRM

  • Jong T. Rhee;Lee, Joon.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.464-469
    • /
    • 2001
  • CRM(Customer Relationship Management : CRM) is an advanced marketing supporting system which analyze customers\` transaction data and classify or target customer groups to effectively increase market share and profit. Many engines were developed to implements the function and those for classification and clustering are considered core ones. In this study, an improved clustering method based on SOM(Self-Organizing Maps : SOM) is proposed. The proposed clustering method finds the optimal number of clusters so that the effectiveness of clustering is increased. It considers all the data types existing in CRM data warehouses. In particular, and adaptive algorithm where the concepts of degeneration and fusion are applied to find optimal number of clusters. The feasibility and efficiency of the proposed method are demonstrated through simulation with simplified data of customers.

  • PDF

A Study on the Development of Intelligent Logistics Classification Solution in Logistics Warehouse (물류창고내 지능형 물류 분류 솔루션 개발에 관한 연구)

  • So-Hyeon Ahn;Ju-Hyeon Kim;Su-Hyun Park;Joo-Young, Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1086-1087
    • /
    • 2023
  • 본 논문은 물류창고 내 컨베이어벨트에서 자동으로 화물의 크기와 무게를 분석하고 이를 인공지능을 기반으로 분류하는 기술에 관한 연구를 다루고 있다. 우리의 연구를 통해 넓은 물류창고에서 전체 분류 과정을 모니터링할 수 있으며, 웹사이트를 활용하여 원거리에서도 물류 분류 과정을 실시간으로 확인 가능하게 한다. 또한 문제 발생 시 기록을 남겨 관리자 간에 관리, 감독이 원활하도록 도와준다.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.