• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.025 seconds

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

An Efficient Classifying Recognition Algorithm of Printed and handwritten numerals (인쇄체 및 필기체 숫자의 효율적인 구분 인식 알고리즘)

  • 홍연찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.517-525
    • /
    • 1999
  • In this paper, we propose efficient total recognition system of handwritten and printed numerals for reducing the classification time. The proposed system consists of two-step neuroclassifier : Printed numerals classifier and handwritten numerals classifier. In the proposed scheme, the printed numerals classifier classifies the printed numerals rapidly with single MLP neural network by low-order feature vector and rejects handwritten numerals. The handwritten numerals classifier classifies the handwritten numerals which is rejected in printed numerals classifier with modularized cluster neural network by complex feature vector. In order to verify the performance of the proposed method,handwritten numerals database of NIST and printed numerals database which include various fonts are used in the experiments. In case of using the proposed classifier, the overall classification time was reduced by 49.1% - 65.5% in comparison of the existent handwritten classifier.

  • PDF

Two-Stage Neural Networks for Sign Language Pattern Recognition (수화 패턴 인식을 위한 2단계 신경망 모델)

  • Kim, Ho-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.

Collaborative Filtering with Improved Quantification Process for Real-time Context Information (실시간 컨텍스트 정보의 정량화 단계를 개선한 협력적 필터링)

  • Lee, Se-Il;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.488-493
    • /
    • 2007
  • In general, recommendation systems quantify real-time context information obtained in the stage of collaborative filtering and use quantified context information in order to recommend services. But the recommendation systems can have problems of recommending inaccurate information because of lack of context information or classifying users into inaccurate groups because of simple classification works in the stage of quantification. In this paper, we solved the problems of lack of context information obtained in real-time by combining users' profile information used in the contents-based filtering and context information obtained in real-time. In addition, we tried collaborative filtering at the quantification stage by improving absolute classification methods to relative ones. As the result of experiments, this method improved prediction preference by 5.8% than real-time recommendation systems using context information in pure P2P environment.

Integrated Model Design of Microarray Data Using miRNA, PPI, Disease Information (miRNA, PPI, 질병 정보를 이용한 마이크로어레이 데이터 통합 모델 설계)

  • Ha, Kyung-Sik;Lim, Jin-Muk;Kim, Hong-Gee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.786-792
    • /
    • 2012
  • A microarray is a collection of thousands of DNAs or RNAs arranged on a substrate, and it enables one to navigate large amounts of gene expression. However, a researcher uses his designed experimental methods to focus on particular phenotypes from the available mass of data. In this paper, we used MicroRNAs(miRNAs) and Protein-Protein Interation(PPI) databases to enhance and expand meanings in microarray data. Further, the expanded data are linked with the Online Mendelian Inheritance in Man(OMIM), and International Statistical Classification of Diseases and Related Health Problems, $10^{th}$ Revision(ICD-10), in order to extract common genetic relationships between diseases. This approach, we expect, should provide new biological views.

Electroencephalogram-based Driver Drowsiness Detection System Using AR Coefficients and SVM (AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템)

  • Han, Hyungseob;Chong, Uipil
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.768-773
    • /
    • 2012
  • One of the main reasons for serious road accidents is driving while drowsy. For this reason, drowsiness detection and warning system for drivers has recently become a very important issue. Monitoring physiological signals provides the possibility of detecting features of drowsiness and fatigue of drivers. One of the effective signals is to measure electroencephalogram (EEG) signals and electrooculogram (EOG) signals. The aim of this study is to extract drowsiness-related features from a set of EEG signals and to classify the features into three states: alertness, drowsiness, sleepiness. This paper proposes a drowsiness detection system using Linear Predictive Coding (LPC) coefficients and Support Vector Machine (SVM). Samples of EEG data from each predefined state were used to train the SVM program by using the proposed feature extraction algorithms. The trained SVM program was tested on unclassified EEG data and subsequently reviewed according to manual classification. The classification rate of the proposed system is over 96.5% for only very small number of samples (250ms, 64 samples). Therefore, it can be applied to real driving incident situation that can occur for a split second.

Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm (Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.395-400
    • /
    • 2011
  • In this paper, we propose an study of the facial emotion recognition considering the dynamical variation of emotional state in facial image sequences. The proposed system consists of two main step: facial image based emotional feature extraction and emotional state classification/recognition. At first, we propose a method for extracting and analyzing the emotional feature region using a combination of Active Shape Model (ASM) and Facial Action Units (FAUs). And then, it is proposed that emotional state classification and recognition method based on Hidden Markov Model (HMM) type of dynamic Bayesian network. Also, we adopt a Harmony Search (HS) algorithm based heuristic optimization procedure in a parameter learning of HMM in order to classify the emotional state more accurately. By using all these methods, we construct the emotion recognition system based on variations of the dynamic facial image sequence and make an attempt at improvement of the recognition performance.

Feature Selection and Classification of Protein CDS Using n-Block substring weighted Linear Model (N-Block substring 가중 선형모형을 이용한 단백질 CDS의 특징 추출 및 분류)

  • Choi, Seong-Yong;Kim, Jin-Su;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.730-736
    • /
    • 2009
  • It is more important to analysis of huge gemonics data in Bioinformatics. Here we present a novel datamining approach to predict structure and function using protein's primnary structure only. We propose not also to develope n-Block substring search algorithm in reducing enormous search space effectively in relation to feature selection, but to formulate weighted linear algorithm in a prediction of structure and function of a protein using primary structure. And we show efficient in protein domain characterization and classification by calculation weight value in determining domain association in each selected substring, and also reveal that more efficient results are acquired through claculated model score result in an inference about degree of association with each CDS(coding sequence) in domain.

Development of Intelligent Traditional Culture Retrieval System based on 3D Digital Timeline (3D 디지털 연표 기반의 지능형 전통문화 검색 시스템 개발)

  • Shin, Yutak;Jo, Jaechoon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.154-162
    • /
    • 2019
  • Despite the development of information and communication technology, which has a great impact on society and culture, there is no platform that provides a systematic classification and state-of-the-art information retrieval system on the traditional culture. Therefore, this paper developed a traditional culture retrieval system capable of convergence services with systematic classification and retrieval based on automatically generate and visualize the 3D timeline. This system provides the function of collecting traditional culture contents, classifying and storing collected traditional culture contents, and automatically generating 3D digital timeline based on stored traditional culture contents. In addition, a system satisfaction questionnaire was developed to evaluate the usability of the system, and 19 students participated in verifying the system. As a result of the experiment, the satisfaction of the system showed that all items were 'satisfied' on average.

Optimize TOD Time-Division with Dynamic Time Warping Distance-based Non-Hierarchical Cluster Analysis (동적 타임 워핑 거리 기반 비 계층적 군집분석을 활용한 TOD 시간분할 최적화)

  • Hwang, Jae-Yeon;Park, Minju;Kim, Yongho;Kang, Woojin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.113-129
    • /
    • 2021
  • Recently, traffic congestion in the city is continuously increasing due to the expansion of the living area centered in the metropolitan area and the concentration of population in large cities. New road construction has become impossible due to the increase in land prices in downtown areas and limited sites, and the importance of efficient data-based road operation is increasingly emerging. For efficient road operation, it is essential to classify appropriate scenarios according to changes in traffic conditions and to operate optimal signals for each scenario. In this study, the Dynamic Time Warping model for cluster analysis of time series data was applied to traffic volume and speed data collected at continuous intersections for optimal scenario classification. We propose a methodology for composing an optimal signal operation scenario by analyzing the characteristics of the scenarios for each data used for classification.