• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.031 seconds

An Availability of Low Cost Sensors for Machine Fault Diagnosis

  • SON, JONG-DUK
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.394-399
    • /
    • 2012
  • In recent years, MEMS sensors show huge attraction in machine condition monitoring, which have advantages in power, size, cost, mobility and flexibility. They can integrate with smart sensors and MEMS sensors are batch product. So the prices are cheap. And the suitability of it for condition monitoring is researched by experimental study. This paper presents a comparative study and performance test of classification of MEMS sensors in target machine fault classification by 3 intelligent classifiers. We attempt to signal validation of MEMS sensor accuracy and reliability and performance comparisons of classifiers are conducted. MEMS accelerometer and MEMS current sensors are employed for experiment test. In addition, a simple feature extraction and cross validation methods were applied to make sure MEMS sensors availabilities. The result of application is good for using fault classification.

  • PDF

A Study on Classification System of Urban Facilities Management Service Model in u-City (u-City 도시시설물관리 서비스모델 분류체계 연구)

  • Kim, Tae-Hoon;Nam, Sang-Kwan;Choi, Hyun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.81-86
    • /
    • 2009
  • This research is a part of the Intelligent Urban Facility Management project of the Korean Land Spatialization Group (KGSL). First, this study started from the investigation of existing u-City service model in order to drive essential components and considerations for the urban facilities management system. Considering the driven conclusions, this study finally proposed the new classification system of urban facilities management service model and the adequate application method in u-City.

  • PDF

A Study of the Intelligent Coastal Surveillance System using EO/IR Vessel Image Classification (선박의 EO/IR 영상식별을 이용한 연안 감시 체계의 연구)

  • Jang, Won-Seok;Jung, Dong-Han;Kim, Joo-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.230-231
    • /
    • 2018
  • Ports and coastal areas that serve as national corridors have threats such as smuggling ships, enemy infiltration ships and pirate ships. To prevent intrusion of intrusive vessels, a system is needed to continuously monitor the coastal area and detect their intrusion. However, it is difficult for surveillance personnel to identify threatened vessels while monitoring large coastal areas. In this paper, we propose a system that can monitor coastal and harbor area and automatically detect ships entering the Navigation Inhibit Area to generate alarms and classify the types of ships by image classification.

  • PDF

Electropulsegraph and Wave Classification Framework (Electropulsegraph 및 파형분류 프레임워크)

  • Park, JinSoo;Choi, Dong Hag;Min, Se Dong;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1388-1389
    • /
    • 2015
  • Electropulsegraphy is a medical device that was invented by an orient medical physician and a few engineers to help the physicians to diagnose patients in more systematic way by analyzing waveforms generated from the device. Data generated form the device has been collected for over several decades, and undergoes functional upgrades today. The device generates 33 waveforms that reflect the states of patients. As one of those upgrading efforts, we strive to develop an intelligent algorithm that makes the diagnostic process automatically, which was previously done manually for a long period of time. The logistic regression algorithm is used for our classification problems, which is one of those well-known algorithms for various classification problems such as character recognition systems. Out of the 33 waveforms, we only use 5 waveform data (Type1 toType5) as training data sets to estimate the parameters of the logistic regression. And the parameters are used to classify waveform inputs chosen at random.

Developing a Multiclass Classification and Intelligent Matching System for Cold Rolled Steel Wire using Machine Learning (머신러닝을 활용한 냉간압조용 선재의 다중 분류 및 지능형 매칭 시스템 개발)

  • K.W. Lee;D.K. Lee;Y.J. Kwon;K.H, Cho;S.S. Park;K.S. Cho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • In this study, we present a system for identifying equivalent grades of standardized wire rod steel based on alloy composition using machine learning techniques. The system comprises two models, one based on a supervised multi-class classification algorithm and the other based on unsupervised autoencoder algorithm. Our evaluation showed that the supervised model exhibited superior performance in terms of prediction stability and reliability of prediction results. This system provides a useful tool for non-experts seeking similar grades of steel based on alloy composition.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

A Study on the Comparison of Classification Models Performance (분류모델의 성과 비교에 관한 연구)

  • 김신곤;박성용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.203-214
    • /
    • 1999
  • 본 연구는 A카드 회사에서 현재 실시하고 텔레마케팅 시스템에 데이터마이닝 기법 가운데 하나인 CHAID, CART 알고리즘 및 신경망 기법을 적용하여 모델을 개발하고 개발괸 모델들의 성과를 분석한다. 이를 통하여 어떻게 기업이 데이터베이스와 데이터마이닝 기법을 마케팅에 효과적으로 사용할 수 있는가에 대한 방안을 제시하고 여러 모델들의 성과를 비교 분석하는 방안을 함께 제시한다.

  • PDF

휴리스틱 매핑에의한 절삭조건의 결정

  • 김성근;박면웅;손영태;박병태;맹희영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.262-266
    • /
    • 1993
  • The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.

Study on Intelligent Autonomous Navigation of Avatar using Hand Gesture Recognition (손 제스처 인식을 통한 인체 아바타의 지능적 자율 이동에 관한 연구)

  • 김종성;박광현;김정배;도준형;송경준;민병의;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.483-486
    • /
    • 1999
  • In this paper, we present a real-time hand gesture recognition system that controls motion of a human avatar based on the pre-defined dynamic hand gesture commands in a virtual environment. Each motion of a human avatar consists of some elementary motions which are produced by solving inverse kinematics to target posture and interpolating joint angles for human-like motions. To overcome processing time of the recognition system for teaming, we use a Fuzzy Min-Max Neural Network (FMMNN) for classification of hand postures

  • PDF

Learning Model for Recommendation of Humor Documents (은닉 변수 모델을 이용한 문서 추천)

  • 이종우;장병탁
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.514-519
    • /
    • 2002
  • 우리는 유머문서의 추천을 위해서 문서 정보, 사용자 정보, 공통 등급매김 정보 등을 모두 이용하는 4 개의 관찰 변수와 이들간 관계의 학습을 위한 은닉변수를 사용한 확률모델을 구축하였다. 이 모델은 학습된 은닉 변수와 가시 변수 간의 관계를 통해 누락 관찰 데이터에 대해서도 추정값을 유도해 낼 수 있으므로 등급매김 정보가 부족하거나 새로운 사용자와 문서의 도입시에 안정적인 추천 성능을 보여 줄 수가 있다. 또한 확률 모델의 학습을 위해서 EMl 알고리즘을 이용하였는데 저평가된 데이터의 이용도를 높이기 위해서 추천을 반대하는 확률 모델을 따로 두고 이들간에 분류모델(classification model)을 두어서 추정값을 분류해내는 방식을 취한다.

  • PDF