• Title/Summary/Keyword: intelligent classification

Search Result 915, Processing Time 0.024 seconds

Pattern Classification using the Block-based Neural Network (블록기반 신경망을 이용한 패턴분류)

  • 공성근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.396-403
    • /
    • 1999
  • 본 논문에서는 새로운 블록기반 신경망을 제안하고 블록기반 신경망의 패턴류 성능을 확인하였다. 블록기반 신경망은 4개의 가변 입출력을 가지는 블록을 기본 구성요소로하고 있으며 블록들의 2차원배열 형태로 이루어진다. 블록기반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬수 있는 새로운 신경망 모델이다. 블록 기반 신경망의 구조와 가중치를 재고성 가능 하드웨어(FPGA)의 비트열에 대응시키고 유전자 알고리즘에 의하여 전역최적화를 하여 구조와 가중치를 최적화한다. 유전 알고리즘에 의하여 설계된 블록기반 신경망을 비선형 결정평면을 가지는 여러 학습패턴에 적용하여 패턴분류 성능을 확인하였다.

  • PDF

Color Space Classification by Using Additive Competitive Learning (가산 경쟁학습을 이용한 컬러공간의 분류)

  • Park, Yong-Hoon;Cho, Yong-Gun;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.125-128
    • /
    • 2003
  • 생물학적 비전 시스템에서 컬러정보는 윤곽정보와 함께 가장 주요한 정보이다. 본 논문에서는 컬러공간의 분류를 위해 향상된 가산 경쟁학습 모델을 제안하며, 제안된 가산 경쟁학습 모델을 사용하여 컬러공간의 분류를 효과적으로 할 수 있다는 것을 보였다.

  • PDF

A Study on Genetic Feature Selection (유전적 특징선택에 관한 연구)

  • Han, Myung-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.292-293
    • /
    • 2008
  • 많은 분야에서 최적의 기준을 바탕으로 특징들의 부분집합을 선택하는 문제들이 핵심 요소로 작용하고 있다. 다양한 특징들의 부분집합 중에서 가능한 한 가장 성능이 우수한 특징들의 부분집합을 선택하기 위해서는 특징선택 방법이 알고리즘과 적용분야들을 고려해야한다. 이 논문에서는 특징선택을 위해서 서로 다른 두 종류의 최적화 문제를 탐색하는 방법을 제안하고, 그 결과를 실험으로 보여준다.

  • PDF

(Color Eigen-Space Analysis for Efficient Face Image Classification) (효과적인 얼굴 영상 분류를 위한 컬러 고유 공간 분석)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.195-200
    • /
    • 1997
  • 영상을 분류한다거나 물체를 인식하는 방법들은 대부분 흑백 영상에 대한 것이다. 그 이유는 기존의 분류 방법에 어떻게 컬러 정보를 결합시킬 것인가 하는 문제를 쉽게 해결하지 못하거나 처리하는데 훨씬 많은 시간이 소요되기 때문이다. 본 연구에서는 컬러 영상들을 분류하기 위하여 기존의 고유 백터를 컬러 공간에 이용할 수 있는 방법을 제안하고, 이 고유 백터를 이용하여 컬러 얼굴 영상에 대한 분류 실험을 통해 여러 가지 특징에 대한 고유 백터를 영상 분류에 이용할 수 있음을 보였다.

  • PDF

Vertex Detection of 3-D Data Using FCV Clustering Algorithm (FCE 클러스터링 알고리듬을 이용한 3차원 데이터의 정점 검출)

  • Choi, Byeong-Geol;Lee, Won-Hui;Kang, Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.24-27
    • /
    • 1998
  • 최근 컴퓨터의 속도 및 용량의 확장과 더불어 3차원 정보에 대한 연구의 필요성이 요구되고 있다. 본 논문에서는이 여기에 관한 연구의 하나로 FCV(Fuzzy c-Varieties)클러스터링의 방법을 써서 3차원 데이터의 변과 장점을 찾아 3차원 물체를 구성하여 중복된 자료의 크기를 압축하는 방법을 제시한다. 여기에 따른 문제점으로 클러스터의 개수를 결정하는 문제가 있는데 이는 fuzzy classification entropy로 해결하였다.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

A Study on Image Retrieval System Using Rough Set (러프 집합을 이용한 영상 검색 시스템에 관한 연구)

  • 김영천;김동현;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.479-484
    • /
    • 1998
  • 입력된 영상으로부터 추론된 정보 표를 지식베이스에 저장하여 결정해를 구하는데는 많은 탐색시간이 소비된다. 본 논문에서는 탐색 시간을 감소시키기 위해서 러프집합의 식별(classification)과 근사(approximation) 개념을 이용하여 추론된 정보를 동치 클래스(equivalence class)로 분류하여 간략화한다. 감소된 규칙, 즉 Core와 Reduct 리스트를 구하여 결정해를 검색하는데 탐색 시간을 감소시키는데 있다.

  • PDF

A Novel Fuzzy Morphology, Part II:Neural Network Implementation

  • Yonggwan Won;Lee, Bae-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.52-58
    • /
    • 1995
  • A shared-weight neural network that performed classification based on the features extracted with the fuzzy morphological operation is introduced. Learning rules for the structuring elements, degree of membership, and weighting factors are also precisely described. In application to handwritten digit recognition problem, the fuzzy morphological shared-weight neural network produced the results which are comparable to the state-of-art for this problem.

  • PDF

A Study on Optimized Customer-Classification Algorithm Using Web-Mining from eCRM (eCRM에서 웹마이닝을 이용한 최적화된 고객분류 알고리즘에 관한 연구)

  • 이재훈;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.439-442
    • /
    • 2002
  • 고객을 중심으로 한 마케팅 기법중 하나인 고객관계관리(CRM : Customer Relationship Management)는 인터넷의 적용과 더불어 다양하게 발전하고 있는 분야 중 최근 가장 큰 이슈가 되고 있다. eCRU이란 CRM에서 인터넷을 이용해 기존의 시스템을 재구성하는 것을 말하는데 고객만족을 극대화하면서 동시에 관련 비용을 절감할 수 있는 새로운 고객관리라고 할 수 있다 본 논문은 웹 상의 고객 패턴을 마이닝을 통하여 고객 정보 추출을 최적화하는 알고리즘을 제시하고 이를 통해 고객분류를 자동으로 할 수 있음을 보였다.

A design of binary decision tree using genetic algorithms and its application to the alphabetic charcter (유전 알고리즘을 이용한 이진 결정 트리의 설계와 영문자 인식에의 응용)

  • 정순원;김경민;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.218-223
    • /
    • 1995
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature or feature subset among all the available features is selected based on fitness function in genetic algorithm which is inversely proportional to classification error, balance between cluster, number of feature used. The proposed design scheme is applied to the handwtitten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF