A Novel Fuzzy Morphology, Part II: Neural Network Implementation
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ABSTRACT

A shared-weight neural network that performed classification based on the features
extracted with the fuzzy morphological operation is introduced. Learning rules for the
structuring elements, degree of membership, and weighting factors are also precisely described.
In application to handwritten digit recognition problem, the fuzzy morphological shared-weight
neural network produced the results which are comparable to the state-of-art for this problem.

L. INTRODUCTION

Fuzzy set theory [Zadeh] has been successfully used in many pattern recognition
applications. However, it has been a big issue how to determine the parameters for the fuzzy
operations such as the degree of membership. Mathematical morphology [Dougherty] has also
been used in pattern recognition as a feature extraction methodology. It also has a fundamental
problem which is how to design the structuring elements, because the result is completely
dependent on the structuring elements.

Multilayer neural networks have been widely employed to solve many problems with the
development of the effective error back-propagation learning rule [Rumelhart 86ab, Werbos].
This learning rule is a objective function based algorithm which is , in detail, an iterative
gradient descent algorithm that updates the parameters (i.e., weights and biases) to minimize the
error. Shared-weight neural network [le Cun] is a special class of multilayer neural networks.
It is a heterogeneous system that performs classification based on the high-order features
combined from locally extracted.

Main purpose of this paper is to introduce an implementation of a neural network that
learns the parameters of the fuzzy morphological operation defined in [Won 95b]. In Section
I, a shared-weight neural network that performs fuzzy morphological operation for feature
extraction is described. In Section III, we present some experimental results obtained from
handwritten digit recognition problem. Finally, in Section 1V, conclusions and further works
are discussed.



III. NEURAL NETWORK IMPLEMENTATION

In this section, we introduce a shared-weight neural network that performs classification
and feature extraction simultaneously. Feature extraction stage of this network performs our
fuzzy erosion and dilation {Won 95b]. Learning rules for the feature extraction network are
also provided.

3.1. SHARED-WEIGHT NEURAL NETWORK

The basic idea of the shared-weight network [le Cun] is to reduce the degrees of freedom
in the network for better generalization and to form high order features from local features
extracted by learned convolution kernels. Fig. 1 shows the structure of the typical shared-
weight neural network. This network is composed of two parts: a feature extraction network
followed by a feedforward network. The feedforward network is a feedforward network. The
feature extraction network can have one or more layers, and each layer can also have one or
more feature maps. The layer in this network performs feature extraction by linear or non-
linear convolution of its input with the kernels (also called structuring elements, templates,
masks, feature detectors). The convolution output is subsampled. Therefore, the sizes of the
feature maps are determined by the sampling rate for the convolution over their input.
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Fig. 1. Architecture of the shared-weight neural network with a single feature extraction layer

in the feature extraction network and one hidden layers for the feedforward network.
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Nodes in a feature map in the first feature extraction layer have a small number of identical
weights, and each node corresponds to a certain position in the input pattern. Therefore, the
number of free weights in a feature map in this layer is dramatically reduced to only the size of
the its kernel over its input (plus the number of the nodes in the feature map if there is one bias
per node). On the other hand, each node extracts local information from its input. Each feature
map in a higher feature extraction layer has as many kernels as the number of the feature maps
in the next lower feature extraction layer. As for the first layer, the weights for the nodes in the
same feature map are identical. Furthermore, the nodes in this layer combine local information
coming from the feature maps in the next lower layer. Finally, the highest layer provides the
input for the feedforward network.



3.2. NODE OPERATION

Previous work approximated the ordinary erosion and dilation with the generalized-mean
operator by setting the parameter p to a large positive or negative value [Gader 93a, Won 95b].
The nodes in the feature extraction network performed a novel gray-scale Hit-Miss transform
which was defined as subtraction of the dilation from the erosion. In other words, the
parameter p that represents the degree of membership was fixed and a node in the feature
extraction network calculated both approximated erosion and dilation. Nodes in the
classification network performed the standard operation.

In order to allow the nodes in the feature extraction network to perform a single operation
(i.e., p is either positive, negative or zero), we first formalized an equation:

(f ®g)(x) = glr(f (2)-1x(z)) ; p, Wj). (1)

This equation is performing the fuzzy erosion if p has a negative value and fuzzy dilation if p
has a pos1t1ve value [Won 95b]. Note that the structuring element tx represents the reflected

structuring (m ) if p has a positive value.

3.3. LEARNING RULE

In equation (1), there are three sets of parameters: structuring element (t), degree (p), and
weighting factor (w). Among them, structuring element and weighting factor can be fixed.
Furthermore, in general, the structuring element has been selected arbitrarily (i.e., zeros).
However, a structuring element designed through learning process produced better performance
[Won 95a], and weighting factor provides more degree of freedom.

In this section, we provide the derivation for the learning rules required to implement the
learning algorithm. Here we only show explicitly the derivation of the learning rule for the
feature extraction network, and that for the classification network is widely available
[Rumelhart, Webos, Won 95a). Assume that each feature extraction layers have a single
feature map for simplifying the formulation, and it can be easily extended for multiple feature
maps. Suppose we want to update the parameters associated with node j. Let the output for the
node j be

O, =net; = {Zw,[r(0, —t, )"} @

In these equations, Oj denotes the output of the node j and O; does the input which is an output
of the node i. Theretore, tji is a member of the structuring element that associates the node j
and the node i. In other words the first subscript indicates the node in the next higher layer.
In terms of the morphological operation, the subscript j represents the location of the origin
(center) of the structuring element in the input domain.

In order to take the derivative for the equations in (2), we first need to take log and obtain
the following equations:

log(nc:tj)=-I:—log{2wji[r(0i -t:)1") (3)
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Taking the derivative on both sides of this equation with respect to pj, tji and wjj, respectively,
yields

-a—.&tj—-————log(nct”)+2w {r(O -t )] log[r (O )] (4a)

op; p;

dnet; r(O;, -t " arO, -t;)

_at_,,- B wﬁ{ net, } 0(0; - t;)) ' “o
and

dnet.

aw‘.J B p,-net?” [r(O )] ‘ ()

Again taking the derivative on both sides of the equations in (3) with respect to O;
produces
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Note that the last terms of the equations in (4b) and (5) are described as
or(0, —t, )
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because we use the sigmoid function for r.

Let d represent the parameters pj, tji, and wji. For gradient descent learning rule to reduce
the error with respect to d, we apply dle chain rufe and obtain the equation
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Since the feature extraction layers are considered the hidden layer in a feedforward network, the
first term of this equation can be defined and written as
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where the node k is the one in the next higher layer. This is called delta error of the node j in
the learning rule for the standard feedforward neural network. In the same manner as for
deriving (8), the first two terms of (8) can be written as
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which is delta error of the node k which is in the next higher layer than the node j. The last
term of the equation (8) has two different forms, depending upon which layer the node k
belongs to. For the nodes in the highest feature extraction layer, it can be written as
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since the node k is a ordinary node which calculates the weighted linear combination of the
inputs for its net input net,. For the nodes in other feature extraction layers, from the equation

(5), it can be written as
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Therefore, from the equations (7) through (11), the learning rule for the structaring
element j; can be obtained. Finally, the learning rule for the structuring element associated with
node j can be summarized by
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The last factor in (12a) is given in (4) for all parameters pj, tj;, and wi;, and the last factor in
(12b) is given by either (10) or (11) depending on which laycr the node belongs to.

There are several implementation details for this learning algorithm. The index k is
representing all the nodes whose output calculation uses the output of node j. Because t;’s are
identical for all j’s in the same feature map, t;;’s for all j’s should be accumulated instead of
updating t;;’s after every j, and then update at tine end. The updating rule for this shared-weight
constmmt is well described in [Won 95a). A practical problem in implementing this learning
rule is the limitation on the magnitude of the parameter pj. Larger range allows more accurate
approximation of the ordinary Min and Max opcranons However, for large numbers, the
region where the gradient for the generalized-mean is non-zero is very small and the gradient is
very large in that region. Thus, the training process may oscillate for large values. Note that
the generalized-mean value is equal to harmonic mean if p = -1, geometric mean if p = 0, and
arithmetic mean if p= 1.

IV. EXPERIMENTAL RESULTS

We conducted some preliminary experiments with the shared-weight neural network that
described in the previous section for handwritten digit recognition problem. We collected 1000
digits for each class from the handwritten digit data base which were extracted from the USPS
mail pieces {Gader 93ab, Won 95a]. The digits were normalized to the fixed size of 24 X 18
using moment normalization|Casey|. Some samples of handwritten digits are shown in Fig. 4,

Among the collected images, 600 digits per class were used for training and 400 for testing
the network. The networks had a single feature extraction layer with twelve feature maps and
thirty hidden units for the classification network. Subsampling rate of two was used. The size
of the structuring elements was 5 X 5. We ran five experiments with different initial values for
the parameters. All parameters were learned.
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Fig. 4. Some samples of handwritten digits.
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For all experiments, the learning rate was 0.02 and the momentum was 0.9. The training
process was stopped by the pre-selected maximum epoch of 100 or Root-Mean-Squared-Error
(RMSE) of 0.05. However, for most our experiments, the training process was terminated by
the RMSE criteria. The parameters were initialized with the random values obtained from the
range [-0.5, 0.5] and the magnitude of the parameter p was clipped at 3. As shown in Table 1,
the network produced the results which are favorably comparable to those from other
approaches [1Gader 93ab, le Cun].

Table 1. Results for handwritten digit recognition problem.
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Train | Epoch 31 29 28 27 29
RMSE 0.0482 | 0.0491 | 00494 | 0.0489 | 0.0487
CorrectionRate | 990% | 988% | 988% | 99.0% | 988%

Test | RMSE 00698 | 00711 | 00714 | 00702 | 0.0706
CorrectionRate | 953% | 95.0% | 948% | 95.0% | 948 %

IV. CONCLUSION

We have described a shared-weight neural network that performed classification based on
the features extracted with our novel fuzzy morphological operation [Won 95b]. A node in the
feature extraction stage of the network performs fuzzy morphological operation that produces
the output values between the standard erosion and dilation. Precise description for the learning
rules for the structuring elements, degree of membership, and weighting factors was also
provided.



The network was applied to handwritten digit recognition problem. We demonstrated that
the fuzzy morphological shared-weight neural network produced the results which are
favorably comparable to the state-of-art for this problem [Gader 93ab, le Cun].

The main goal of this paper was to introduce an implementation of a neural network that
learns the parameters of the fuzzy morphological operations defined in [Won 95b]. Even
though we selected the shared-weight network in our preliminary study, our definitions can be
used as a node operation for other networks such as the standard feedforward network. Also
more applications including gray-level images and signals should be considered for future
works.
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