Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.3
/
pp.172-179
/
2015
Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.
Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min;Lee, Jin-Hyeong
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.427-430
/
2007
기존의 LVQ(Learning Vector Quantization) 방법을 이용하여 물체를 분류하면 데이터의 학습이 빠르고 연산량이 적어 실시간으로 물체를 분류할 수 있는 장점이 있다. 하지만 데이터의 훈련시 output neuron의 개수를 정확히 예측할 수 없고 output neuron의 개수에 따라 물체를 분류하는 정확도가 매우 달라질 수 있다. 그러므로 본 논문에서는 output neuron의 개수를 데이터의 특성에 맞게 결정해주는 알고리즘을 제시한다. DLVQ(Dynamic Learning Vector Quantization) 알고리즘은 승자로 결정된 가중치 벡터의 부류가 샘플 데이터의 부류와 같으면 업데이트하고 다르면 새로운 가중치 벡터로 생성한다. 제한한 알고리즘의 가장 다른 부분은 미리 output neuron의 개수를 정하는 것이 아니라 훈련 과정에서 동적으로 output neuron의 개수를 생성하는 것이다. 그리고 클러터의 구분 방법을 제시하여 사람, 차, 클러터를 구분할 수 있다.
The Transactions of the Korea Information Processing Society
/
v.6
no.11
/
pp.2863-2874
/
1999
Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.257-260
/
2007
인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.
Park, Chang-Seok;Kim, Byeong-Man;Seo, Byung-Hoon;Lee, Kwang-Ho
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.409-415
/
2003
Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.243-251
/
2000
In general, Rough Set theory is used for classification, inference, and decision analysis of incomplete data by using approximation space concepts in information system. Information system can include quantitative attribute values which have interval characteristics, or incomplete data such as multiple or unknown(missing) data. These incomplete data cause the inconsistency in information system and decrease the classification ability in system using Rough Sets. In this paper, we present various types of incomplete data which may occur in information system and propose INcomplete information Processing System(INiPS) which converts incomplete information system into complete information system in using Rough Sets.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09b
/
pp.166-169
/
2003
유전자에 대한 정보를 획득하는 기술적인 문제가 해결되면서, 질병 진단을 위한 새로운 접근 방법으로 혈액 속에 있는 모든 단백질(proteome)의 구성을 분석하는 프로테오믹스(proteomics)에 대한 연구가 최근 들어 활발하게 진행되고 있다. 본 논문은 암 진단을 위하여 혈액 중의 단백질의 구성을 측정한 2차원 전기영동 (2D electrophoresis) 젤 데이터를 해석하는 새로운 방법을 제시하였다. 우선 측정된 많은 단백질 스팟(spot) 중에서 T-statistics 방법으로 단백질 스팟들을 선택하였다. 선택된 단백질 스팟들로 이루어진 암 환자와 정상인 두 샘플들의 확률 분포를 각 집단에 따로 적용된 PCA 영역에서 계산하였다. 최종적으로 조건부 확률의 차이에 근거한 베이즈 분류(Bayes classification) 이론을 적용하여 암 진단을 하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.2
/
pp.103-108
/
2002
Manufacturing the complex surface plates in Stern and Stem is major factor in computing the processing cost of a ship. If these parts are effectively classified, it helps to compute the processing cost and find the way of cut-down on the processing costs. This study is intended to effectively classify surface plates. To solve this problem, we apply Pattern Classification of Neural-Networks.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.1
/
pp.84-89
/
2004
The machine cell formation problem is the problem to group machines into machine families and parts into part families so as to minimize bottleneck machines, exceptional parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. This paper proposes a new machine cell formation method based on the adaptive Hamming net which is a kind of neural network model. To show the applicability of the proposed method, it presents some experiment results and compares the method with other cell formation methods. From the experiments, we observed that the proposed method could produce good cells for the machine cell formation problem.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.1
/
pp.52-60
/
2008
This research proposes a new strategy where documents are encoded into string vectors for text categorization and modified versions of SVM to be adaptable to string vectors. Traditionally, when the traditional version of SVM is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text categorization, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and apply the modified version of SVM adaptable to string vectors for text categorization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.