최근 지식기반 사회의 진입과 더불어 지식재산에 대한 관심이 증가하고 있다. 특히 하이테크산업을 이끌고 있는 ICT기업들은 지식재산의 체계적 관리를 위하여 끊임없이 노력하고 있다. 기업의 지적 자본을 대표하는 특허정보가 지속적으로 축적됨에 따라 정량적인 분석이 가능해졌다. 특허정보를 통하여 특허수준부터 기업수준, 산업수준, 국가수준에 이르기 까지 다양한 수준에서의 분석이 가능하다. 특허정보는 기술 현황을 파악하거나 성과에 미치는 영향을 분석하는데 활용되고 있다. 네트워크를 통한 분석은 지식 영향의 흐름을 나타내며, 이를 통하여 기술의 변화를 확인할 수 있을 뿐만 아니라 앞으로의 연구 방향을 예측할 수 있다. 네트워크를 활용한 분석 분야에서는 기업이 차지하는 네트워크상에서의 위치가 기업성과에 미치는 영향을 다각도에서 분석하는 연구가 진행되고 있다. 특허 인용 정보를 활용한 분석은 크게 두 가지로, 인용 횟수를 활용하는 인용지표 분석과 인용관계를 바탕으로 한 네트워크 분석으로 나뉜다. 본 연구는 기업간 규모의 차이가 기업 간 특허 인용 관계에 미치는 영향을 분석하고자 하였다. S&P 500에 등록된 IT 및 통신서비스를 제공하는 74개 기업을 선정하였으며 기업 간 특허 인용 관계를 구하기 위하여 2009년, 2010년의 특허 인용 정보를 수집하여 기업 간 특허 인용 관계를 나타냈다. 또한 기업규모를 대표하는 지표로 기업 총 자산에 대한 정보를 수집하였다. 기업규모에 따라 외부 지식에 대한 의존도가 달라지는 선행연구를 통하여 기업규모가 기업간 특허 인용 관계에 미치는 영향을 알아보고자 하였다. 이에 기업 간 총 자산의 차이에 절대값을 취한 값을 기업 간 거리로 정의하였으며, 기업 간 규모의 단순 차이를 기업 간 계층으로 정의하여 새로운 소시오매트릭스를 생성하였다. 2010년도 기업간 특허 인용 관계를 나타낸 소시오매트릭스를 종속변수로 하였으며, 2009년도 기업 간 특허 인용 네트워크, 기업 간 거리 및 계층을 독립변수로 하여 QAP분석 및 MR-QAP분석을 실시하였다. QAP분석 결과 기업 간 거리와 계층은 특허 인용 관계에 유의한 영향을 미치는 것으로 나타났다. MR-QAP분석에는 2009년도 기업 간 특허 인용 관계와 기업 간 거리만 유의함을 확인할 수 있었다. 특히 2009년도 기업 간 특허 인용 관계가 2010년도 기업 간 특허 인용 관계에 가장 큰 영향력을 행사하는 것을 볼 수 있어 기업 간 특허 인용관계는 연속성이 존재하는 것으로 볼 수 있었다.
SaaS는 사용자가 필요한 소프트웨어를 인터넷을 통해 원격으로 서비스 받을 수 있도록 하는 모델로 소프트웨어 시장에서 차지하는 비중이 커짐과 동시에 관련 분야의 비즈니스 요구사항의 증가에 따라 지속적인 성장이 기대되는 분야이다. 이에 본 연구는 SaaS 공급업체들을 대상으로 기업에서 추구하는 차별화 전략 및 낮은 가격전략과 고객획득성과와의 관계를 살펴보고 더 나아가 이들 간의 관계에서 SaaS 기술성숙도 수준의 매개효과와 조절효과를 알아보고자 하였다. 이를 위해 SaaS 제공업체 및 국내 CNK(commerce net Korea) 데이터베이스에 등록된 업체의 어플리케이션을 대상으로, 175개 기업 총 199개 SaaS 전략사업단위의 설문결과를 분석에 활용하였다. SaaS 기술성숙도가 차별화전략 및 낮은가격전략과 고객획득성과와의 관계를 매개하는지 검증하기 위해 Baron and Kenny (1986)가 제안한 절차에 따라 회귀분석을 실시하였고, SaaS 기술성숙도의 조절효과를 살펴보기 위해 위계적 회귀분석(hierarchical regression analysis) 방법을 적용한 상호작용효과를 검증하였다. 분석결과, 첫째, SaaS 제공업체가 추구하는 차별화 전략(업종특화, 파트너활용, 전담인력수) 및 낮은 가격전략(월이용료, 초기설치비)과 같은 기업전략은 고객획득에 긍정적인 영향을 미치는 것으로 나타났다. 또한, SaaS 공급업체의 기술성숙도 수준(어플리케이션 서비스 제공, 웹 기본 어플리케이션, 웹 서비스 어플리케이션)과 고객 획득성과 간에 유의미한 긍정적인 관계가 있는 것으로 확인되었다. 마지막으로, SaaS 기술성숙도 수준의 기업전략과 고객획득성과와의 관계에 대한 조절효과는 주로 차별화 전략에 대해 나타난 반면, 매개효과는 주로 낮은 가격전략에 대해 나타남을 확인하였다.
최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.
최근 도심을 중심으로 연립 다세대의 거래가 활성화되고 직방, 다방등과 같은 플랫폼 서비스가 성장하고 있다. 연립 다세대는 수요 변화에 따른 시장 규모 확대와 함께 정보 비대칭으로 인해 사회적 문제가 발생 되는 등 부동산 정보의 사각지대이다. 또한, 서울특별시 또는 한국감정원에서 사용하는 5개 또는 25개의 권역 구분은 행정구역 내부를 중심으로 설정되었으며, 기존의 부동산 연구에서 사용되어 왔다. 이는 도시계획에 의한 권역구분이기 때문에 부동산 연구를 위한 권역 구분이 아니다. 이에 본 연구에서는 기존 연구를 토대로 향후 주택가 격추정에 있어 서울특별시의 공간구조를 재설정할 필요가 있다고 보았다. 이에 본 연구에서는 연립 다세대 실거래가 데이터를 기초로 하여 헤도닉 모형에 적용하였으며, 이를 K-Means Clustering 알고리즘을 사용해 서울특별시의 공간구조를 다시 군집하였다. 본 연구에서는 2014년 1월부터 2016년 12월까지 3년간 국토교통부의 서울시 연립 다세대 실거래가 데이터와 2016년 공시지가를 활용하였다. 실거래가 데이터에서 본 연구에서는 지하거래 제거, 면적당 가격 표준화 및 5이상 -5이하의 실거래 사례 제거와 같이 데이터 제거를 통한 데이터 전처리 작업을 수행하였다. 데이터전처리 후 고정된 초기값 설정으로 결정된 중심점이 매번 같은 결과로 나오게 K-means Clustering을 수행한 후 군집 별로 헤도닉 모형을 활용한 회귀분석을 하였으며, 코사인 유사도를 계산하여 유사성 분석을 진행하였다. 이에 본 연구의 결과는 모형 적합도가 평균 75% 이상으로, 헤도닉 모형에 사용된 변수는 유의미하였다. 즉, 기존 서울을 행정구역 25개 또는 5개의 권역으로 나뉘어 실거래가지수 등 부동산 가격 관련 통계지표를 작성하던 방식을 속성의 영향력이 유사한 영역을 묶어 16개의 구역으로 나누었다. 따라서 본 연구에서는 K-Means Clustering 알고리즘에 실거래가 데이터로 헤도닉 모형을 활용하여 연립 다세대 실거래가를 기반으로 한 군집분류방법을 도출하였다. 또한, 학문적 실무적 시사점을 제시하였고, 본 연구의 한계점과 향후 연구 방향에 대해 제시하였다.
본 연구는 현대 사회에서 가장 가치 있는 문화자산이자 한류의 흐름에서 특히 중요한 위치를 차지하는 디지털 음악에 초점을 두었다. 디지털 음악에 대하여 공신력 있는 음원 차트인 '가온 차트'에 진입한 음원들의 73주간 순위 변화를 수집하였으며 유사한 특징을 가지는 패턴들로 분류하였다. 이후 각 순위 변화 패턴으로부터 주목할 만한 특징에 대한 설명적 분석을 수행하였다. 구체적으로 음원에 대한 신뢰도 이슈가 발생하기 이전 기간의 국내 발매된 디지털 음원들로 한정하여 시점을 일치시킨 후 시계열 군집분석을 통해 패턴을 도출하고자 하였다. 데이터 수집과 전처리를 통하여 742건의 중복되지 않는 음원들을 확보하였고, 시계열 순위 변화에 대한 시계열 군집분석 결과 16개의 패턴들이 도출되었다. 이후 도출된 패턴들을 기반으로 '스테디셀러'와 '원 히트 원더'의 두 가지 유형의 대표적인 패턴을 확인하였다. 나아가 두 패턴에 대하여 차트 내에서 음원의 생존 기간과 음원 순위에 관점에서 다섯 가지의 세분화된 패턴으로 분류하였다. 각 패턴들이 가지는 중요한 특징들은 다음과 같다. 원 히트 원더형 패턴에서 아티스트의 슈퍼스타 효과와 편승효과가 강하게 나타났으며, 소비자들의 디지털 음원 선택에 강한 영향을 미친다는 것을 확인하였다. 나아가 스테디셀러형 패턴을 통해서 매우 오랜시간 소비자들의 선택을 받는 음원들을 확인하였고, 소비자의 니즈를 관통하며 가장 많은 선택을 받는 음원들이 오히려 원 히트 원더형 패턴이 아니라 스테디셀러: 중기 패턴에 포진하고 있음을 확인하였다. 특히 주목할 만한 점은 스테디셀러형 패턴을 통해 기존의 패턴과는 상반되는 '차트 역주행' 현상을 확인했다는 것이다. 본 연구는 디지털 음원을 중심으로 상대적으로 소외되었던 분야인 시간의 흐름에 따른 음원의 순위 변화에 초점을 두었고, 음원의 흥행과 순위를 예측하는 것이 아니라 순위 변화의 패턴을 세분화함으로써 음원 연구에 대한 새로운 접근을 시도하였다는 점에서 의의가 있다.
개인정보 분야에서의 다양한 정보 보안 이슈가 발생함에 따라 해당 분야의 전문가를 확인하기 위한 프레임워크는 매우 중요한 영역이 되었다. 전문가 탐색과정은 주로 연구 업적 등을 통한 주관적인 평가가 일반적이지만 보다 객관적인 방식을 통한 선정이 매우 중요하다. 소셜 네트워크 분석기법의 응용이 다양한 영역에서 활용됨에 따라 본 연구는 개인정보보호분야의 전문가를 확인하고 해당 전문가들의 연구실적을 판단하기 위한 분석 프레임워크를 제시하고자 하였다. 본 연구는 연구 목적에 따라 개인정보보호 연구영역의 연구성과 자료를 바탕으로 소셜 네트워크 분석을 실시하고 핵심연구자의 성과를 분석하였다. 수집된 데이터는 연구의 공저자, 발행기관, 소속기관 등의 네트워크 구성에 활용되어 핵심전문가 집단을 관리하기 위한 프레임워크를 제시하였다. 본 연구는 NDSL에서 최근 5년 동안 발표된 논문들을 중심으로 자료를 수집하였다. 연구자들이 학술 정보를 교환하는 정기 간행물인 학술지를 바탕으로 연구 네트워크를 형성하는 네트워크 자료를 수집함으로써 연구활동에 대한 정보를 분석할 수 있었다. 일반적으로 연구자들은 연구 결과를 논문으로 발표하고, 발표된 논문들이 다수의 관련 분야 전문가들에게 공유된다는 점에서 학술연구지는 연구자들의 지식관련 의사소통 공간이며 지식의 구조화에 핵심적인 역할을 수행한다. 그에 따라 본 연구의 연구 대상 분야로 설정한 개인정보보호 분야의 연구 구조를 이해하기 위해 국내에서 발표된 관련 분야의 논문들을 연구 대상으로 자료가 수집되었다. 특히 자료의 선별 기준은 국내 최대의 데이터베이스를 보유하고 있는 NDSL에서 개인정보보호 관련 키워드를 보유한 논문 데이터를 수집 및 정제하여 분석 자료로 사용하였다. 2005년부터 2013년까지 약 2,000개의 연구결과 중 주제 관련성, 공저자 추출 등을 수집하였다. 데이터 수집 이후 연구 분석을 위한 데이터 처리를 통하여 통해 총 784개의 논문을 선정하고 분석대상으로 확정하였다. 분석 결과, 개인정보보호 연구영역의 전문가 집단을 이용한 연구논문 성과에 대한 분석은 핵심 연구자들을 추출해내고 전문가 집단을 관리하는 데 도움을 제공할 수 있다. 특히 소속집단 및 연구논문 발행기관을 분석함으로써 개인정보보호 연구영역에서 확인되지 않았던 연구자들의 연구 논문 게재의 공저자 네트워크가 매우 밀접함을 확인할 수 있다. 또한 연구논문의 발행기관 및 소속집단의 특성을 추출함으로써 개인정보보호 영역의 전문가 평가지표로서 소셜 네트워크 지표들의 활용가능성을 확인하였다.
정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.
본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.
대학생 시기는 실질적으로 직업선택을 해야 하는 시기이다. 우리 사회가 빠르게 고도로 발달하는 만큼, 직업은 다양화, 세분화, 전문화되어 대학생들의 취업 준비기간은 또한 갈수록 길어지고 있다. 본 연구는 대학생들이 학교 내외에서 하는 경험하는 다양한 활동들이 취업에 어떤 영향이 있을지 대학생들의 로그데이터를 중심으로 분석해 보았다. 실험을 위하여 학생들의 다양한 활동을 체계적으로 분류하고 활동 데이터를 6개의 핵심역량(직무전문성강화 역량, 리더십 및 팀웍 역량, 세계화 역량, 직무몰입 역량, 직업탐색 역량, 자율이행역량)으로 구분하였고, 여기서 구분된 6개의 역량 값이 취업여부(취업그룹, 미취업그룹)에 미치는 영향을 분석하였다. 분석 결과 6개의 역량 모두 취업집단과 미취업집단의 수준차이가 유의한 것을 확인할 수 있어 학교에서의 활동은 취업에 유의미함을 유추할 수 있었다. 다음으로 6개의 역량이 취업의 질적성과에 미치는 영향을 분석하기 위하여 6개의 역량수준을 상·하로 나누고, 첫연봉액을 기준으로 6개의 그룹을 만든 후 관계를 확인해 보았는데, 그 결과 6개의 역량 중 세계화역량, 직업탐색역량, 자율이행역량 수준이 높은 학생이 연봉을 기준으로 한 취업성과 또한 높은 것으로 확인되었다. 본 연구의 이론적 공헌은 다음과 같다. 첫 번째, 학창경험으로부터 추출할 수 있는 역량을 인사조직관리분야의 역량과 연결하며, 개인의 경력성공을 위해 대학생으로서 필요한 역량을 직업탐색역량과 자율이행역량을 추가하였다는 점이다. 두 번째, 활동로그의 실데이터 기반으로 각각의 역량을 측정하고 결과변수와 검증을 한 점이다. 세 번째, 양적성과(취업률)뿐만 아니라 질적성과(연봉수준)를 분석한 점이다. 본 연구의 실무적 활용은 다음과 같다. 첫 번째, 대학생들의 경력개발계획 수립 시 가이드가 될 수 있다. 전략이 없거나 균형을 갖추지 못한 또는 과도한 스펙을 쌓기는 지양하고 직업세계와 직무에 대한 분석을 바탕으로 자신의 강점을 표현할 수 있는 취업준비가 필요하다. 두 번째, 학교와 기업, 지자체, 정부 등 대학생들을 위한 행사를 기획하는 담당자는 대학생들이 필요로 하는 경험을 설계할 본 연구에서 제시한 6대 역량을 참고할 수 있다. 이벤트의 수요자인 대학생이 필요한 역량을 키우면서 하면서 각 기관의 목적을 더할 때 수요자와 공급자 모두 만족스러운 결과를 만들 수 있다. 세 번째, 디지털 대전환 시대, 국가의 균형발전을 구상하는 정부의 정책담당자는 대학생들의 호기심과 에너지를 대학생들의 역량개발과 국가의 균형발전을 함께 성취하는 방향으로 정책을 만들 수 있다. 기존에 없던 플랫폼서비스를 시도하고, 기존의 아날로그 상품이나 서비스와 기업문화를 디지털화 하는 데에는 많은 인력이 필요하며 디지털세대인 현 대학생들의 활약은 전 산업에서 촉매가 될 뿐 아니라 성공적인 경력개발을 위한 대학생들에게도 필요한 경험이라 사료된다.
정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.