This paper presents a design and implementation of an intelligent-integrated production-logistics systems. The situation considered here is that there are multiple manufacturing plants and multiple distribution centers. Effective distribution resource and production planning are required to reduce inventory cost and to avoid inventory shortage. We propose an intelligent forecasting scheme of each distribution centers, adaptive inventory replenishment planning, distribution resource planning, and integrated production planning system. In forecasting a huge number of on-line model identification is performed using neural network approximation capability. An efficient adaptive replenishment planning and distribution resource planning are also presented in connection with forecasting scheme. An appropriate production is also requested based on production lead-time and the results of distribution planning. Experimental simulations are presented to verify the proposed approach using real data.
Many firms are trying to optimize their production and distribution functions separately, but possible savings by this approach may be limited. Nowadays, it is more important to analyze these two functions simultaneously by trading off the costs associated with the whole. In this paper, I treat a production and distribution planning problem for single-period inventory products comprised of a single production facility and multiple customers, with the aim of optimally coordinating important and interrelated decisions of production sequencing and vehicle routing. Then, I propose a hybrid genetic algorithm incorporating several local optimization techniques, HGAP, for integrated production-distribution planning. Computational results on test problems show that HGAP is effective and generates substantial cost savings over Hurter and Buer's decoupled planning approach in which vehicle routing is first developed and a production sequence is consequently derived. Especially, HGAP performs better on the problems where customers are dispersed with multi-item demand than on the problems where customers are divided into several zones based on single-item demand.
This paper presents a new evolutionary algorithm to solve complex multi-level integration problems, which is called multi-level symbiotic evolutionary algorithm (MEA). The MEA uses an efficient feedback mechanism to flow evolution information between and within levels, to enhance parallel search capability, and to improve convergence speed and population diversity. To show the MEA's applicability, It is applied to the integrated planning of production and distribution in supply chain management. The encoding and decoding methods are devised for the integrated problem. A set of experiments has been carried out, and the results are reported. The superiority of the algorithm's performance is demonstrated through experiments.
Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.
Until now, the traditional production models and logistics have developed a broader strategic approach called supply chain. However, there are some obstacles to apply industry practice because of unrealistic assumptions. The most serious of them is that they assume the lead times are integer multiples of the planning time grid. This assumption makes it difficult to express the processing and transportation lags correctly. Thus, in this paper, we propose a new methodology for the integrated production/distribution model having non-integer time lags using the concept of dynamic production function. In case that the time lags are integer or non-integer, the dynamic production function reflects well the situation under given environments. Experiments show that the proposed model can express the real system more accurately than the prior model can.
기업 운영에서 SCM (Supply Chain Management)의 중요성이 인식되면서 공급, 생산, 분배 등의 기능들을 통합적으로 관리하는 새로운 접근법의 필요성이 커지고 있다. 이 접근법은 여러 다른 기능들의 의사결정 문제를 하나의 통합된 최적화 모델로 분석하는 방법이다. 특히 공급사슬의 통합적인 운영을 위해서는 이전의 확정적 방법론 보다는 보다 구매자와 공급자의 관계를 유연하게 통합해 줄 수 있는 방법론이 필요하다. SCM은 대규모 문제이고 또한 다양한 내외 요인에 의해 기존의 설정된 계획 내용이나 상황이 항시 동적으로 변경될 수 있기에, 이들 정보를 통합 계획에 반영될 수 있도록 하여야 한다. 본 연구에서는 SCM의 핵심이 되는 생산계획과 분배계획 문제들을 효율적으로 통합할 수 있는 유전 알고리즘 (Genetic Algorithm)을 제시하고, 유전 알고리즘을 기반으로 동적 SCM을 위한 멀티 에이전트 시스템을 구현한다. 한편 통합계획 문제에서 유전 알고리즘을 통해 100%에 근접하는 최적해를 구하였고, 통합계획으로 얻은 결과와 통합 계획을 하지 않은 경우의 결과 값에서 큰 차이를 확인 할 수 있었다.
This paper presents an integrated order scheduling method with the improved DRP concept for multi-echelon distribution system that has the constraint of limited production capacity of producers. The proposed method reflects the dynamic characteristics of inventory level changes in the regional and central distribution center. The simulation is done with two models : the traditional DRP method and the proposed method presented in this paper. From the results, the latter is more efficient than the former in cost, customer's service level as well as balanced production load on each producer.
Analytic models have been developed to solve integrated production-distribution problems in supply chain management (SCM). As one of major constraints in analytic models, capacity, which is the total operation time in this paper has mostly been known or disregarded assuming infinite capacity. Also, as major factors, machine processing time to fabricate or assemble a part or product at a certain machine center in production system and vehicle processing time to deliver a product to a customer by a certain vehicle in distribution system have been fixed and regarded as a static factor, But in the real systems significant differences exit between capacity and the required time to achieve the production-distribution plan and between processing time and consumed time to process a part or product. In this paper, capacity and processing times in the analytic model are considered as dynamic factors and adjusted by the results from independently developed simulation model, which includes general production-distribution characteristics. Through experiments, we obtain the more realistic solutions reflecting stochastic natures by performing the iterative analytic-simulation procedure.
Recently, a multi facility, multi product and multi period industrial problem has been widely investigated in Supply Chain Network(SCN). One of keys issues in the current SCN research area involves minimizing both production and distribution costs. This study deals with finding an optimal solution for minimizing the total cost of production and distribution problems in supply chain network. First, we presented an integrated mathematical model that satisfies the minimum cost in the supply chain. To solve the presented mathematical model, we used a genetic algorithm with an excellent searching ability for complicated solution space. To represent the given model effectively, the matrix based real-number coding schema is used. The difference rate of the objective function value for the termination condition is applied. Computational experimental results show that the real size problems we encountered can be solved within a reasonable time.
Supply chain is the link that moves products between suppliers, manufactures, wholesalers, distribution, retailers and ended consumers. Supply chain management(SCM) is a way to supervise the flow of products, materials and information as they move along the supply chain. In the recent years, Most of the companies are in a hurry the introduction of SCM to obtain international competitiveness. The goal of SCM is to optimize the supply chain, which can not only reduce inventories, but may also create a higher profit margin for finished goods by giving customers exactly what they want. There are four major decision areas (location, production, inventory, transportation) in supply chain management, and there are both strategic and operational elements in each of these decision areas. This paper is concerned with the integrated production planning problem including not only the production cost but also the transportation cost in supply chains, and an efficient algorithm using genetic algorithm and quickest path method is presented to solve the problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.