• Title/Summary/Keyword: integrals

Search Result 617, Processing Time 0.022 seconds

Spin and Pseudo Spins in Theoretical Chemistry. A Unified View for Superposed and Entangled Quantum Systems

  • Yamaguchi, Y.;Nakano, M.;Nagao, H.;Okumura, M.;Yamanaka, S.;Kawakami, T.;Yamaki, D.;Nishino, M.;Shigeta, Y.;Kitagawa, Y.;Takano, Y.;Takahata, M.;Takeda, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.864-880
    • /
    • 2003
  • A unified picture for magnetism, superconductivity, quantum optics and other properties of molecule-based materials has been presented on the basis of effective model Hamiltonians, where necessary parameter values have been determined by the first principle calculations of cluster models and/or band models. These properties of the matetials are qualitatively discussed on the basis of the spin and pseudo-spin Hamiltonian models, where several quantum operators are expressed by spin variables under the two level approximation. As an example, ab initio broken-symmetry DFT calculations are performed for cyclic magnetic ring constructed of 34 hydrogen atoms in order to obtain effective exchange integrals in the spin Hamiltonian model. The natural orbital analysis of the DFT solution was performed to obtain symmetry-adapted molecular orbitals and their occupation numbers. Several chemical indices such as information entropy and unpaired electron density were calculated on the basis of the occupation numbers to elucidate the spin and pair correlations, and bonding characteristic (kinetic correlation) of this mesoscopic magnetic ring. Both classical and quantum effects for spin alignments and singlet spin-pair formations are discussed on the basis of the true spin Hamiltonian model in detail. Quantum effects are also discussed in the case of superconductivity, atom optics and quantum optics based on the pseudo spin Hamiltonian models. The coherent and squeezed states of spins, atoms and quantum field are discussed to obtain a unified picture for correlation, coherence and decoherence in future materials. Implications of theoretical results are examined in relation to recent experiments on molecule-based materials and molecular design of future molecular soft materials in the intersection area between molecular and biomolecular materials.

The Selective p-Distribution for Adaptive Refinement of L-Shaped Plates Subiected to Bending (휨을 받는 L-형 평판의 적응적 세분화를 위한 선택적 p-분배)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Lee, Seung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.533-541
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow- (경계적분방정식의 수치해법 -축대칭 유동-)

  • Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 1990
  • A numerical solution method of the boundary integral equation for axisymmetric potential flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths of ring source and ring vorticity are approximated by linear functions of a parameter $\zeta$ on a segment. The geometry of the body is represented by a cubic B-spline. Limiting integral expressions as the field point tends to the surface having ring source and ring vorticity distribution are derived upto the order of ${\zeta}ln{\zeta}$. In numerical calculations, the principal value integrals over the adjacent segments cancel each other exactly. Thus the singular part proportional to $\(\frac{1}{\zeta}\)$ can be subtracted off in the calculation of the induced velocity by singularities. And the terms proportional to $ln{\zeta}$ and ${\zeta}ln{\zeta}$ can be integrated analytically. Thus those are subtracted off in the numerical calculations and the numerical value obtained from the analytic integrations for $ln{\zeta}$ and ${\zeta}ln{\zeta}$ are added to the induced velocity. The four point Gaussian Quadrature formula was used to evaluate the higher order terms than ${\zeta}ln{\zeta}$ in the integration over the adjacent segments to the field points and the integral over the segments off the field points. The root mean square errors, $E_2$, are examined as a function of the number of nodes to determine convergence rates. The convergence rate of this method approaches 2.

  • PDF

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

Changes in Growths of Tomato and Grafted Watermelon Seedlings and Allometric Relationship among Growth Parameters as Affected by Night Temperature (야간온도에 따른 토마토묘와 수박 접목묘의 생육과 생육지표간 상대적 관계)

  • Kang, Yun-Im;Kwon, Joon-Kuk;Park, Kyoung-Sub;Choi, Hyo-Gil;Choi, Gyeong-Lee;Lee, Si-Young;Cho, Myeong-Whan;Kim, Dae-Young;Kang, Nam-Jun
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.9-19
    • /
    • 2011
  • This study aimed to investigate the effect of night temperature on tomato and grafted watermelon seedlings, particularly, shoot height, leaf area, stem diameter, and total dry weight and relationship among the growth parameters which are used to evaluate healthy seedling. Plants were grown at 10, 15, and $20^{\circ}C$. Leaf area index (LAI) and total dry weight of tomato seedlings weight deceased more significantly under $10^{\circ}C$ than other night temperature regimes. In grafted watermelon seedlings, shoot height increased shapely and stem diameter decreased under $20^{\circ}C$. Increasing the integral temperature, leaf area of tomato seedlings under $10^{\circ}C$ decreased and shoot height of grafted watermelon seedlings increased although temperature integrals are same. The relationships among the growth parameter were changed upon the night temperature. Stem diameters of tomato seedlings had upward tendency with increase of shoot height, but there were no significant differences among night temperature regimes. Shoot hight of grafted watermelon seedlings had no relationship with shoot height. These results indicate that shoot height and stem diameter of tomato seedlings is not appropriate for assessing seedlings quality but shoot height of grafted watermelon seedlings with stem diameter is available.