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Abstract

A numerical solution method of the boundary integral equation for axisymmetric potential
flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths
of ring source and ring vorticity are approximated by linear functions of a parameter { on a
segment. The geometry of the body is represented by a cubic B-spline.

Limiting integral expressions as the field point tends to the surface having ring source and
ring vorticity distribution are derived uplo the order of {InZ. In numerical calculations, the prin-
cipal value integrals over the adjacent segments cancel each other exactly. Thus the singular
part proportional to (%) can be subtracted off in the calculation of the induced velocity by
singularities. And the terms proportional to Inf and ¢InZ can be integrated analytically. Thus
those are subtracted off in the numerical calculations and the numerical value obtained from
the analytic integrations for InZ and ¢InZ are added to the induced velocity. The four point
Gaussian Quadrature formula was used to evaluate the higher order terms than ¢In{ in the
integration over the adjacent segments to the field points and the integral over the segments
off the field points.

The root mean square errors, E, are examined as a function of the number of nodes to

determine convergence rates. The convergence rate of this method approaches 2.
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1. Introduction

Boundary Integral Equation methods are used to
solve potential flows like ship wave problem, f{foil
problem, etc. Evaluation of Cauchy Principal Value
Integral is the most important part to reduce num-
erical errors. Numerical error depends on the eva-
luation method of Cauchy Principal Value Integral.
Considerable literature exists for solving such
problems [9,10].

When the boundary integral equations are solved,
the numerical evaluation of Cauchy Principal Value
Integral affects the accuracy of the solution. While
the Principal Value Integral can be treated analy-
tically in the lowest order method (i.e. constant
strength over a panel), any accurate method to
evaluate the Principal Value Integral is not known
without using higher order numerical quadrature in

the higher order method.

In this paper, a numerical solution method of the
boundary integral equation for axisymmetric poten-
tial flows is presented, Those are represented by
ring source and ring vorticity distribution. Stre-
source and ring vorticity are

ngths of ring

approximated by linear {functions of a parameter

{ on a segment. The geometry of the body is
represented by a cubic B-spline (Barsky and Gree-
nberg [2)).

Limiting integral expressions as the field point
tends to the surface having ring source and ring
vorticity distribution are derived upto the order of
¢InZ. In numerical calculations, the principal value
integrals over the adjacent segments cancel each
other exactly. Thus the singular part proportional

to (%) can be subtracted off in the calculation of
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the induced velocity by singularities. And the terms
proportional to In{ and ZInZ can be integrated
analytically. Thus those are subtracted off in the
numerical calculations and the numerical values
obtained from the analytic intergrations for In{ and
The four
point Gaussian Quadrature formula(Ferziger (8],
Abramowitz & Stegun [1].
the higher order terms than {In{ in the integration

over the adjacent segments to the field points and

¢Ing are added to the induced velocity.

was used to evaluate

the integral over the segments off the field points.
This method can be extended to two-dimensional

and three-dimensional problem,
2. Mathematical Formulation

Consider an ideal fluid which is assumed to be
inviscid and incompressible. The flow is assumed to
be irrotational. The fluid domain is bounded with
the following surfaces, the body, S, and the sur-
faces at infinity, S.. The surfaces, taken as a whole,

will be denoted as S. The governing equation and

the boundary conditions are as follows: Laplace
equation:
=0 in the fluid domain ¢))]
Body boundary condition:
Foon(x,t)=V-u on B(x,1)=0 (2)

where 2(x,5,2) is a right-handed coordinate system
V includes both transla-
and B(x,£)=0 is

the function representing the body surface geometry

with 2z positive upwards,

tional and rotational velocities,

at time £.
The Green function, G(z;y), satisfies the follo-
wing equation.
PPG(x;9)=—08(x—y) (3

where z is the vector to the field point, y is the
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vector to the source point, and §(x—y) is the Dirac
delta function. Through the application of Green's

second identity in the fluid domain, the potential

is given as.

als g )= | Jrs[ aj —¢_;n_]cds (4)

where « is an included solid angle at x and S is
the body surface.
The Green function that satisfies Eq. (3) is

Glr. )= 4 = |xiy1~- (5

where x is the position vector of a field point

and y is that of a source point. ¢, on the body
is known from the body boundary condition, Eq.
(2).
For axisymmetric bodies, Eq. (4) can be reduced
as follows (Newman, [12)):
a(r, 03(n 0= [ [ —5.0 e (©
where

4y _ 4
Go= f =1 K
0G* 0 1
“on” fo Wa;z"(iR '>dﬁ
= =2 E(m),,,,Jr[_‘}(f_—glE(m)
16

£1f
o

F=0r—r")+(z—2")?
r=(r+r)+(z—2")?
m=1—(*/p}

K and E are the complete elliptic integral of the
first kind and the second kind, (r,2) is a field
point, (#’,2’) is a source point in the polar coord-
inate system, and s is the line representing the body
surface in the polar coordinate system. A different
formulation can be derived in order to get the
tangential velocities, ¢; and ¢, on the body directly.
The normal velocity, ¢,, on the body is given
from the body boundary condition, Eq. (2). Taking
the gradient of Fq. (4) yields,

ale, O (.= [ ["¢ rGgr-2 ]ds @

The second term of the rlght—handed side in the
above equation can be represented as follows (Bro-

ckett, (5)):
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ap;g:”g[mycv_yxrc] ds €))
where

=X (F¢)

=— nx((,’&n”"‘(f)ss_l'gbbb)

:”"S{)sé +dos,

and 5 is a tangential vector on the suraface, b is a
bi-normal vector, and » is a normal vector all of
which satisfy the relation, b=uxs. Taking dot
products of s,b, and #, Fredholm integral equations
of the second kind for ¢, ¢s, and ¢ can be obtained
respectively:
as 7 3= [ [ (ase PG s (—gul +41s) X7 GIdS
on SB
ab-rg= [ | [gub-TG—b+ (gl +4ss) X7 GIAS
on Sp €))
a7 ¢=| [ gun-FG—n-(—:l +4ua') X7 GIdS

on Sp
The domain of integration, S, for the source points
includes both Sz and S..
For axisymmetric bodies, Eq. (8) can be reduced

as follows:
a s s
anS:fsr’ [Tz' (uje,+use:)
— 28 (urertuted)|ds (10)
os’

where #! and #} are ring source r-directional and
z~directional induced velocities respectively, «; and
u? are ring vortex r-directional and z-directional
induced velocities respectively, and ¢ and e are
r-directional and z-directional unit vectors respec-
tively, The induced velocity by a ring vortex can
be derived from the stream function given in
Batchelor (4). When r is not zero,

uy =21 BGn) 2 ()~ K(m))
£p nr

Us"=

— ,Q(Lz,:;zgﬁ E(m)
21%

wor = HEZED L (Kim)— BOm)——3-Eom) |
1 rr 4

w =2 (R(m)—Em))+-27 =1 By (1)
7' 1 {IP
When =0,

ul=ul=0,
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W 2n(z—2')

2 [r12+(2_zl)2]3/2 4

o 2ar!
“1*‘[;/2_{;(;:"2/)233/2 . (12)

Taking dot products of 5 for Eq. (10),
« = 4 a¢ . s s
as Ve fsr [ 7 (uie,+ules)

—~~g—$—s~ (ui'g,—{—u’;g,)]ds on sg (13)

Eq.(13) is a Fredholm integral equation of the

second kind for ¢, on sp.
3. Numerical Implementation

The boundary, sz, is discretized into small segments
in order to solve the integral equations numeric-
ally. ¢ and ¢, are approximated by linear functions
of the parameter £ on a given segment. In particular.

$si(0)=1—L)bsj+Ldsjua for 0<¢<]
and
¢nJ(C):(1_C)¢nJ’+C¢n;‘+1 for 0<C<1.

The geometry of the body is represented by a

cubic B-spline (Barsky and Greenberg(2]), or

rO=Ea @V, and Q=25 Vi, (19

where a,({) and 5,({) are the uniform cubic B-
spline basis functions and V; are vertices.

The end condition should be imposed to get a
complete B-spline approximation. There are several

=[!G, ’
L= [ ST By T

methods to impose end conditions according to the
geometrical characteristics (Barsky(3)). The deri-
vative of B-spline interpolation at the end is set to
get the tangent of the given geometry if the tangent
is known. If the tangent is not known, the deriv-
ative at the end is set to be the slope between two
vertices at the end obtained by using B-spline
algorithm.

To evaluate the integrals over the segments the
four point Gaussian Quadrature formula was used

(Ferziger [(81), Abramowitz & Stegun(1]). The

integrands in Eq. (13) have (-}) type singularities

as the field point approaches the source point. When

the principal value integrals are evaluated, it is
1
o
(Brockett, et. al {61), The geometry is represented

convenient to subtract off ( )type singularities

by a cubic B-spline curve, i.e,

2’ =dyt+di+do - dol?
the control points are the ends of the
1

segments, there are <C> singularities in the induced

r'=cyt+ e+t +e?

Since

velocities when r=¢q and 2z=d; and when r=c¢;
+eyteptes and z=dy+di+dy+ds.  Consider the
r-directional induced velocity by ring source distri-
bution excluding the small segment ¢ from a control

point,
f . wrlds=L+1,

with

:f‘ 4l t- ) A—dminCm) +) (eot>) V(e T ) k)% g
o VQatalt I HF@L ) el ) (dG )

20 1Al aveg

T
Vel+d® Yt g P

J=ds/dfy Le=—

h 1 e
where m;=1—m P e
’ ~/012+d12

(1). Similarly,
L= f "2 (E(m)—K(m))r'Jde
T mr

= 280 Yel AN [ [Nz (o1 Haaabdid),

<o 612 {—dlz
where ,=0.5 from Abramowitz & Stegun [1].

When -1,

<o

’ -t 4(r'— ’ o
L= fﬂ ,,,&rWLLE(m)r J(©)dz
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2",'_4,1?:51 f;;lnCdC—i—O(f;CZlnCdC) (18)

= for small ¢, and 6,=0.24998368310 from Abramowitz & Stegun

) emneat] vof [ ernear) (16)
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_ 2 L dy G VCEDE 5 [ ’ Lo y
— ot [ GICTEDE 5, [ avaer+ o [ e an
and
B = [ 2 B~ Km)r T
_ 28 /Ct +D* : ) 3t G 2(C\Ca+-DyDo)N (Lorj et ger Loray gt ap
oGP [ neray (it KGR [ S+ O f emera) ()
where '=1—Z and {/=— Since Co(d)=coli+1), Ci()=—c1(G+1), Coli)=c2(i+1), and Cs(d)

/C 2 l D 2 e
=—¢4(é), where i and i+1 represent i-th and (i+1)-th segments of the surface, by using the characteristics

of the cubic B-spline, singular parts of the integrals I;+I,’ for the same ¢ cancel each other exactly. Thus
the singular part (%> can be subtracted off in the calculation of the induced velocity by ring sources on a
segment. This statement can be applied to the case for the calculation of the induced velocity by ring
vortices on a segment. Consider now the vertical component of the induced velocity by the ring source

distribution:
5.7 p—
fdsﬁfu,r ds=1I;
with

L= A5 pm @
Le e

B 929d 1 dy Vet dg? 1 1 .
- [ dertdd ) [angacro( [ engat). (19)

4/012+d12 Le Q [4\)
Similarly, the induced velocities at the ends of the segment by ring vortices on a segment has (%) sing-

ularities. The radial component of the induced velocity due to the vorticity distribution are:

fd _Eu'jr’dsZI4+I;,

with
= [ 2D (B~ KO Tae= — oL [incac o [ ctncac) 0
and
15:*“13
. fl A=) gy g (Qde
Le g
— 2d, A diel+dl ! '
BV = A e R .J jancac+o( ). @0

Consider the vertical component of the induced velocity due to the vorticity distribution:

f uﬁr’dsi[ﬁ-b
4s—¢

with )

I=— f ;—pZI—(E(m)—K(m))JdC

280 v/ 2+d2‘ ! G 2(5 gﬁd)ﬁ 1 1
‘»L—%“i[ [ ingac+(- e ) eme ac)+o( [ g de). (22)

and

L=I

=" Al=r) , pe 20 [P AT o det¥ars 1 §

= [ BTt S [ e e, [lang aco [lemeas). (@3

The logarithmic function is integrable and can be integrated by numerical quadrature. But since the
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accurate integration of the logarithmic function
requires a higher order quadrature formula, the
method following Ferziger (8] and Dommermuth &
Yue [7] can be used. The integral can be factored
into the sum of the logarithmic singular part up to
¢Ing which is integrable analytically and the non-
singular part which requires numerical quadrature

(Ferziger [8]).
In numerical calculations,
2¢1 d

1
he gt

the principal value

4

=[G B = g e
The integral in Eq. (24) includes all the higher
order trems than ZIn¢ in the integration over the
adjacent segments to the field points. The four point
Gaussian Quadrature formula (Abramowitz & Stegun
[1)) was used to evaluate the integral in Egq. (24)
and the integral over the segments off the field
points.

The above statements are valid for a smooth
surface. To get a finite induced velocity at a corner,
which means that the principal value integral at
the corner has a finite value, the following condition
should be satisfied (Kang (111):

(¢n)r = () ncos0+ ($:)psing

(:)F=— () asind— ($s) cost (26)
where 6 is the intersection angle at the corner and
the subscript F means the other boundary interse-
cted at the corner with the angle 6. The above
condition requires the continuity of the fluid velocity
at the corner when the fluid is approaching the
corner along the body surface and the free surface.
The fluid particle has finite velocity at the corner
if the above condition is satisfied. The cubic B-
spline is not continuous through the intersection
point. There are some finite contributions from the
singular part (%) as explained in Appendix 5.Al
of the reference (Kang [113).

4. Numerical Caiculation

The present method has been applied to the flow

around a sphere and a prolate speroid (minor axis

KEREREEE H27E 38 19904 94

Ir gt PEE LY
1 iﬂl‘z’i‘ipalgn@dc__C,l,jff,l,z“félf_‘ 51<7' 1 )
cy (4]
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integrals over the adjacent segments cancel each
other xactly. Thus the singular part proportional
to <ch> can be subtracted off in the calculation of
the induced velocity by singularities. And the terms
proportional to Inf{ and ¢InZ can be integrated
analytically. Thus those are subtracted off in the
numerical calculations and the numerical values
obtained from the analytic integrations for InZ and

ClnZ are added to the induced velocity. For example,

! 24

to major axis ratio, b/a=0.5). The velocity of the
body, =, is -1. All the quantities are calculated
with a double-precision program. The root mean
square errors, E,, are examined as a functions of
the number of nodes to determine convergence rates.
Fig. 1 shows comparison of the numerical and the
analytic solution for a sphere(radius=1, N=64)
where N is the number of nodes. Fig. 2 shows E;
errors in log-log scale for various number of nodes.
The convergence rate is defined as the slope of
(1/E,) in log-log scale. The convergence rate of
this method approaches 2. Fig. 3 and Fig. 4, which
are the results for the prolate spheroid, show the

trends are similar to those for the sphere.
5. Conclusion

A numerical solution method of the boundary
integral equation for axisymmetric potenoial flows
are presented, Those are represented by ring source
and ring voricity distribution. Strengths of ring
source and ring vorticity are approximated by linear
The
geometry of the body is represented by a cubic

functions of a parameter { on a segment.
B-spline.

Limiting integral expressions as the field point
tends to the surface having ring source and ring
vorticity distribution were derived upto the order
of CInZ. By using those, an efficient numerical
method was proposed and justified.

The root mean square errors, E,, were examined
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as a functions of the number of nodes to determine
convergence rates. The convergence rate of this
method approaches 2. Thus this method is useful
for the computation of local flow like the leading

edge flow.
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