• Title/Summary/Keyword: integral plate theory

Search Result 97, Processing Time 0.024 seconds

Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory

  • Belbachir, Nasrine;Bourada, Mohamed;Draiche, Kada;Tounsi, Abdelouahed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.409-422
    • /
    • 2020
  • This article deals with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal loading using a refined plate theory with four variables. In this theory, the undetermined integral terms are used and the number of variables is reduced to four, instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors is avoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stresses are compared with those of classical, first-order, higher-order and trigonometric shear theories reported in the literature.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Robust quasi 3D computational model for mechanical response of FG thick sandwich plate

  • Achouri, Fatima;Benyoucef, Samir;Bourada, Fouad;Bouiadjra, Rabbab Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.571-589
    • /
    • 2019
  • This paper aims to develop a quasi-3D shear deformation theory for the study of bending, buckling and free vibration responses of functionally graded (FG) sandwich thick plates. For that, in the present theory, both the components of normal deformation and shear strain are included. The displacement field of the proposed model contains undetermined integral terms and involves only four unknown functions with including stretching effect. Using Navier's technique the solution of the problem is derived for simply supported sandwich plate. Numerical results have been reported, and compared with those available in the open literature were excellent agreement was observed. Finally, a detailed parametric study is presented to demonstrate the effect of the different parameters on the flexural responses, free vibration and buckling of a simply supported sandwich plates.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa;Chikh, Abdelbaki;Hebali, Habib;Kaci, Abdelhakim;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.489-498
    • /
    • 2019
  • The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

A new quasi-3D HSDT for buckling and vibration of FG plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.737-749
    • /
    • 2017
  • A new quasi-3D higher shear deformation theory (quasi-3D HSDT) for functionally graded plates is proposed in this article. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower surfaces of the plate without using any shear correction factor. The highlight of the proposed theory is that it uses undetermined integral terms in displacement field and involves a smaller number of variables and governing equations than the conventional quasi-3D theories, but its solutions compare well with 3D and quasi-3D solutions. Equations of motion are obtained from the Hamilton principle. Analytical solutions for buckling and dynamic problems are deduced for simply supported plates. Numerical results are presented to prove the accuracy of the proposed theory.