• Title/Summary/Keyword: integral image

Search Result 332, Processing Time 0.028 seconds

Linear Regression-Based Precision Enhancement of Summed Area Table (선형 회귀분석 기반 합산영역테이블 정밀도 향상 기법)

  • Jeong, Juhyeon;Lee, Sungkil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • Summed area table (SAT) is a data structure in which the sum of pixel values in an arbitrary rectangular area can be represented by the linear combination of four pixel values. Since SAT serially accumulates the pixel values from an image corner to the other corner, a high-resolution image can yield overflow in a floating-point representation. In this paper, we present a new SAT construction technique, which accumulates only the residuals from the linearly-regressed representation of an image and thereby significantly reduces the accumulation errors. Also, we propose a method to find the integral of the linear regression in constant time using double integral. We performed experiments on the image reconstruction, and the results showed that our approach more reduces the accumulation errors than the conventional fixed-offset SAT.

Analysis of 3D reconstructed images based on signal model of plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 복원 기술의 신호모델을 이용한 3D 복원 영상 분석)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Plane-based computational integral imaging (CIIR) provides the reconstruction of depth-dependent 3D plane images. However, it has problem degrading the resolution of reconstructed images due to the artifact noise according to the depth. In this paper, to overcome this problem, a signal model for plane-based CIIR is explain. Also the compensation process is introduced to remove the noise caused from CIIR. Computational experiments show that we analyze the characteristics of noise in the reconstructed image of 2D Gaussian image and the high-resolution images can be obtained by using the compensation process.

Enhancement of 3D image resolution in computational integral imaging reconstruction by a combination of a round mapping model and interpolation methods (원형매핑 모델과 보간법을 복합 사용하는 컴퓨터 집적 영상 복원 기술에서 3D 영상의 해상도 개선)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1853-1859
    • /
    • 2008
  • In this paper, we propose a novel method to improve the visual quality of reconstructed images for 3D pattern recognition based on the computational integral imaging reconstruction (CIIR). The proposed CIIR method provides improved 3D reconstructed images by superimposing magnified elemental images by a combination of a round mapping model and image interpolation algorithms. To objectively evaluate the proposed method, we introduce an experimental framework for a computational pickup process and a CIIR process using a Gaussian function and evaluate the proposed method. We also carry out experiments on 3D objects and present their results.

Fast Calculation Algorithm for Line Integral on CT Reconstruction (CT 영상재구성을 위한 빠른 선적분 알고리즘)

  • Kwon Su, Chon;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Iterative reconstruction of CT takes a long time because projection and back-projection are alternatively repeated until taking a good image. To reduce the reconstruction time, we need a fast algorithm for calculating the projection which is a time-consuming step. In this paper, we proposed a new algorithm to calculate the line integral and the algorithm is approximately 10% faster than the well-known Siddon method (Jacobs version) and has a good image quality. Although the algorithm has been investigated for the case of parallel beams, it can be extended to the case of fan and cone beam geometries in the future.

Incomplete Information Recognition Using Fuzzy Integrals Aggregation: With Application to Multiple Matchers for Image Verification

  • Kim, Seong H.;M. Kamel
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.28-31
    • /
    • 2003
  • In the present work, a main purpose is to propose a fuzzy integral-based aggregation framework to complementarily combine partial information due to lack of completeness. Based on Choquet integral (CI) viewed as monotone expectation, we take into account complementary, non-interactive, and substitutive aggregations of different sources of defective information. A CI-based system representing upper, conventional, and lower expectations is designed far handling three aggregation attitudes towards uncertain information. In particular, based on Choquet integrals for belief measure, probability measure, and plausibility measure, CI$\_$bi/-, CI$\_$pr/ and CI$\_$pl/-aggregator are constructed, respectively. To illustrate a validity of proposed aggregation framework, multiple matching systems are developed by combining three simple individual template-matching systems and tested under various image variations. Finally, compared to individual matchers as well as other traditional multiple matchers in terms of an accuracy rate, it is shown that a proposed CI-aggregator system, {CI$\_$bl/-aggregator, CI$\_$pl/-aggregator, Cl$\_$pl/-aggregator}, is likely to offer a potential framework for either enhancing completeness or for resolving conflict or for reducing uncertainty of partial information.

  • PDF

Computational integral imaging reconstruction of 3D object using a depth conversion technique

  • Tan, Chun-Wei;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.730-733
    • /
    • 2008
  • In this paper, a novel CII method using a depth conversion technique is proposed. The proposed method can move a far 3D object near lenslet array and reduce the computation cost dramatically. To show the usefulness of the proposed method, we carry out the preliminary experiment and its results are presented.

  • PDF

Orthoscopic integral imaging by use of concave-convex lens array coupling (오목-볼록 렌즈 어레이 결합을 이용한 orthoscopic 집적결상)

  • 서장일;차성도;신승호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.238-239
    • /
    • 2003
  • 집적결상(integral imaging)에서 렌즈어레이(lens array)를 이용하여 3차원적인 물체를 기본영상(elemental image)들로 결상한 후, 다시 그 기본 이미지들로부터 3차원 이미지를 재생하는 과정에서 기본 이미지들을 변환시키지 않으면, 3차원 이미지가 재생될 때, 렌즈어레이와 수직한 축에 대해 렌즈어레이에 가까운 쪽과 먼 쪽이 서로 바뀌는 슈도스코픽(pseudoscopic) 현상이 일어난다. 그래서 기본이미지들을 변환시키기 위해 렌즈어레이를 한번 더 사용한 이단 집적결상계를 이용하거나 영상처리 방법을 이용하는데, 이와 같은 방법은 광학적 손실을 크게 하거나 처리 속도를 느리게 한다. (중략)

  • PDF

Distortion Correction Method Using Spectral Characteristics of Integral Images (집적영상의 스펙트럼 특성을 이용한 왜곡 교정 방법)

  • Jin, Zhengju;Lee, Byung-Ju;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we propose a new method to correct the perspective distortion that occurs in the process of acquiring the integral images. In the proposed method, the distortion correction is based on the spectral characteristics of integral images. As element images of an integral image are repeated nearly periodically, its Fourier spectrum is given as an impulse train. On the contrary, the impulse train do not appear in the spectra of distorted images. In the proposed method, therefore, the perspective distortion parameters are detected by using the characteristics of the spectrum obtained through the Fourier transform, and then the distorted images are corrected by using the parameters. Through experiments, we verify that the proposed method effectively works for the perspective distortion correction.

Coding Efficiency Improvement By Applying Rate-Distortion Optimization To 3D-DCT Based Integral Image Compression Method (3D-DCT 기반 집적영상 압축 방법의 율-왜곡 최적화를 통한 부호화 효율 향상 방법)

  • Jeon, Ju-Il;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a rate-distortion optimization method to improve the coding efficiency of the conventional 3D-DCT based compression method using adaptive block mode selection for integral images. In the conventional 3D-DCT based compression method, 3D-DCT blocks of variable block sizes are adaptively selected depending on the characteristics of integral images, and then 3D-DCT is performed. The proposed method applies a rate-distortion optimization to determine the optimal block mode. In addition, we suggest the optimal Lagrangian parameter for integral images. Experimental results show that the proposed method gives bit-rate reduction of about 5%.

Convertible 3D-2D display by use of integral imaging system with plastic fiber array

  • Kim, Young-Min;Choi, Hee-Jin;Cho, Seong-Woo;Kim, Yun-Hee;Kim, Joo-Hwan;Park, Gil-Bae;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1482-1485
    • /
    • 2007
  • A three-dimensional (3D)-two-dimensional (2D) convertible display system using a plastic fiber array is proposed. The proposed system has an advantage of making use of a light source for 3D image from an arbitrary location. The optical efficiency of 3D images in the proposed system is enhanced compared with previous research.

  • PDF