• 제목/요약/키워드: integral dependence

검색결과 45건 처리시간 0.033초

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

  • Kumar, Rajneesh;Gupta, Rajani Rani
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.577-592
    • /
    • 2008
  • Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

유한요소법을 이용한 전자기력 계산방법의 비교 (Comparison of Force Calculation Methods in Finite Element Method)

  • ;류재섭;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.100-103
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method are reviewed. The methods are applied to the magnetic force calculation of 2D linear and nonlinear Problems. As the results the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.

On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS

  • Gitae Kim;Jae-Hyuk Oh
    • Journal of the Korean Physical Society
    • /
    • 제80권
    • /
    • pp.30-36
    • /
    • 2022
  • Holographic model of massive scalar field with its self-interaction λϕn in AdS space is able to give a logarithmic scale dependence to marginal multi-trace deformation couplings on its dual conformal field theory, where λ is the self-interaction coupling of the scalar field, ϕ, and n is an integral number. In arXiv:1501.06664, the authors realize this feature by looking at bulk scalar solutions near AdS boundary imposing a specific boundary condition between the coefficients of non-normalizable and normalizable modes of the scalar field excitations. We study the same holographic model to see scale dependence of marginal deformations on the dual conformal field theory by employing completely different method: holographic Wilsonian renormalization group. We solve Hamilton-Jacobi equation derived from the holographic model of massive scalar with λϕn interaction and obtain the solution of marginal multi-trace deformations up to the leading order in λ. It turns out that the solution of marginal multi-trace deformation also presents logarithmic behavior in energy scale near UV region.

균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구 (Transient Response of Functionally Graded Piezoelectric Ceramic with Crack)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.21-27
    • /
    • 2003
  • 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 면외전단 충격(anti-plane shear impact)을 받는 기능경사 압전 세라믹(functionally graded piezoelectric ceramic)의 중앙에 존재하는 균열(central crack)의 동적 응답에 대해 연구한다. 기능경사 압전재료의 물성치(material property)는 두께방향을 따라 연속적으로 변한다고 가정한다. 라플라스 변환(Laplace transform)과 푸리에 변환(Fourier transform)을 사용하여 두 쌍의 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equations of the second kind)으로 표현한다. 재료 물성치의 변화도(gradient of material properties)와 전기하중(electric loading)의 영향을 보기 위해 동응력세기계수(dynamic stress intensity factor)에 대한 수치 결과를 제시하였다.

KROSS: Probing the Tully-Fisher Relation over Cosmic Time

  • Bureau, Martin
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.35.2-35.2
    • /
    • 2018
  • Using the K-band Multi-object Spectrograph (KMOS) at the Very Large Telescope (VLT), the KMOS Redshift One Spectroscopic Survey (KROSS) has gathered integral-field data for ~800 star-forming galaxies at a redshift z~1, when the universe was roughly half its current age and forming the bulk of its stars. With spatially-resolved observations, KROSS reveals galaxies that are both gas-rich and highly turbulent. It is possible to derive the observed and baryonic Tully-Fisher (luminosity - rotation velocity) relations, thus constraining the mass-to-light ratios and total (luminous + dark) masses of the galaxies. This in turn highlights the dependence of the relation zero-point on the degree of rotational support of the galaxies (rotational velocity to velocity dispersion ratio). By degrading and analogously analysing integral-field data of hundreds of local galaxies from the Sydney-AAO Multi-object Integral-field Spectrograph (SAMI) survey, a robust comparison z=0 Tully-Fisher relation can also be derived, thus further constraining the luminous and dark mass growth of disk galaxies over the last 7 billions years. This unique comparison also reveals that systematic effects associated with sample selection and analysis methods are as large as the effects expected from cosmological evolution, and thus that most other comparisons employing heterogeneous data and/or methods can safely be ignored.

  • PDF

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

3D 집적 영상에서 영역 분할을 이용한 요소 영상의 압축 기법 (Compression of Elemental Images Using Block Division in 3D Integral Imaging)

  • 강호현;신동학;김은수
    • 한국통신학회논문지
    • /
    • 제34권3C호
    • /
    • pp.297-303
    • /
    • 2009
  • 집적 영상 기술은 잘 알려진 3D 영상 기록 및 디스플레이 기술이다. 집적 영상에서 사용되는 대용량 데이터는 3D 영상을 저장하고 전송하기 위한 압축 기법을 요구한다. 기존의 압축 방법에서는 동일한 기록 시스템을 사용한 다할 지라도 요소 영상의 데이터 크기가 3D 물체의 위치, 조명과 렌즈 배열 등의 다양한 기록 조건에 따라 크게 달라진다. 본 논문에서는 기록 조건에 따른 요소 영상 특성의 의존성을 줄이기 위하여 집적 영상에서 요소 영상의 분할 영역을 이용한 압축 기법이 제안된다. 제안된 기법은 각 3D 물체의 픽업 위치에 따른 요소 영상의 지역적 유사성을 고려하여 향상된 압축률을 보여준다. 제안된 기법의 효율성을 보이기 위하여, 다양한 요소 영상들이 픽업되었고 표준 MPEG-4를 이용하여 압축이 진행되었다. 실험을 통하여 제안된 압축 기법이 기존의 압축 방식에 비하여 9%의 압축률 향상을 보였다.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.