• Title/Summary/Keyword: integer number

Search Result 464, Processing Time 0.023 seconds

The Structure Type Introduced in Java (Java 언어에 structure type의 도입)

  • Lee, Ho-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1883-1895
    • /
    • 1998
  • Java 프로그램밍 언어는 general-purpose concurrent object-oriented 언어로 알려져 있다. Java 언어는 개념과 구문 모두가 매우 간결하고 통일되어 있으며 인터넷 환경에서 최대한 활용되도록 하기 위하여 가상기계 개념을 도입하여 목적코드를 생성한다. 프로그래밍 언어에서 가장 중요한 부분이 data type 부분이다. Java 언어는 primitive type과 reference type을 지원한다. Primitive type과 reference type을 지원한다. Primitive type에는 boolean type integral type이 있다. Integral type에는 character, byte, short integer, integer, long integer, single-precision 과 double-precision floating point number가 있다. Reference type에는 class type, interface type, array type이 있다. 그러나 Java 언어는 general-purpose 프로그래밍 언어가 일반적으로 지원하는 structure type을 지원하지 않는다. 대신에 class type이 structure type을 포함하여 지원하는 구조로 되어 있다. 그러나 class type과 structure type은 서로 상이한 data type으로 판단된다. 따라서 Java 언어가 general-purpose의 성격을 가지기 위해서는 structure type을 명시적으로 지원하는 것이 바람직하다고 생각된다. 이 논문은 structure type을 Java 언어에 포함시킬 것을 제안한다.

  • PDF

An Integer Programming Approach to the PCB Grouping Problem

  • Yu Sungyeol;Kim Duksung;Park Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.394-401
    • /
    • 2003
  • We consider a PCB grouping problem arising from the electronic industry. Given a surface mounting device, several types of PCBs and a number of component feeders used to assemble the PCBs. the optimization problem is the PCB grouping problem while minimizing setup time of component feeders. We formulate the problem as an Integer programming model and propose a column generation approach to solve the Integer programming formulation. In this approach we decompose the original problem Into master problem and column generation subproblem Starting with a few columns in the master problem. we generate new columns successively by solving subproblem optimally. To solve the subproblem. we use a branrh-and-rut approach. Computational experiments show that our solution approach gives high quality solutions in a reasonable computing time.

  • PDF

Optimal Room Assignment Problem for Multi-floor Facility using Binary Integer Programming (이진정수계획법을 사용한 복층숙소의 최적 방 배정문제)

  • Lee, Sang-Won;Rim, Suk-Chul
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • Consider a multi-floor facility with multiple rooms of unequal size on each floor. Students come from many organizations to attend the conference to be held at this facility. In assigning the rooms to the students, several constraints must be met; such as boys and girls must not be assigned to the rooms on the same floor. Given the capacity of each room and the number of students from each organization, the problem is assigning students to rooms under a set of constraints and various objectives. We present six models with different objective functions; and formulate them as binary integer programming problems. A numerical example and a case study follow to illustrate the proposed models.

ON THE DIOPHANTINE EQUATION (5pn2 - 1)x + (p(p - 5)n2 + 1)y = (pn)z

  • Kizildere, Elif;Soydan, Gokhan
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.139-150
    • /
    • 2020
  • Let p be a prime number with p > 3, p ≡ 3 (mod 4) and let n be a positive integer. In this paper, we prove that the Diophantine equation (5pn2 - 1)x + (p(p - 5)n2 + 1)y = (pn)z has only the positive integer solution (x, y, z) = (1, 1, 2) where pn ≡ ±1 (mod 5). As an another result, we show that the Diophantine equation (35n2 - 1)x + (14n2 + 1)y = (7n)z has only the positive integer solution (x, y, z) = (1, 1, 2) where n ≡ ±3 (mod 5) or 5 | n. On the proofs, we use the properties of Jacobi symbol and Baker's method.

The University Examination And Course Timetabling Problem With Integer Programming

  • Chung, Yerim;Kim, Hak-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.9-20
    • /
    • 2019
  • In this paper, we study the university timetabling problem, which consists of two subproblems, the university course timetabling problem and the examination timetabling problem. Given a set of classrooms, students, teachers, and lectures, the problem is to assign a number of courses (and examinations) to suitable timeslots and classrooms while satisfying the given set of constraints. We discuss the modeling and solution approaches to construct course and examination timetables for one of the largest Korean university. By using binary integer programming formulations, we describe these two complex real-world problems. Then, we propose a solution method, called NOGOOD, to solve the examination timetabling model. The computation results show that NOGOOD finds the optimal examination schedule for the given instance. Although we consider a specific instance of the university timetabling problem, the methods we use can be applicable to modeling and solving other timetabling problems.

ON THE MULTI-DIMENSIONAL PARTITIONS OF SMALL INTEGERS

  • Kim, Jun-Kyo
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.101-107
    • /
    • 2012
  • For each dimension exceeds 1, determining the number of multi-dimensional partitions of a positive integer is an open question in combinatorial number theory. For n ${\leq}$ 14 and d ${\geq}$ 1 we derive a formula for the function ${\wp}_d(n)$ where ${\wp}_d(n)$ denotes the number of partitions of n arranged on a d-dimensional space. We also give an another definition of the d-dimensional partitions using the union of finite number of divisor sets of integers.

Design of Mixed Integer Linear Programming Model for Transportation Planning (혼합 정수 선형 계획법을 이용한 수송 계획 모델 설계)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Won, Young-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.166-174
    • /
    • 2016
  • In this paper, we developed a mixed-integer linear programming model for transportation planning of athletes in sports events. The transportation planning of athletes involves finding the lowest-cost and fastest-time plan for distributing athletes from multiple accommodation to stadium. The decision variables associate with the number of driving events, and the total transportation cost is the objective function that needs to be minimized. The proposed method uses mixed integer linear programming to solve transportation problem, thus the global optimality is guaranteed. In order to verify the effectiveness of proposed method, we performed simulation and built the sports event management service platform (SEMSP) for transportation planning.

A Quantitative Model for a Supply Chain Design

  • Cho, Geon;Ryu, Il;Lee, Kyoung-Jae;Park, Yi-Sook;Jung, Kyung-Ho;Kim, Do-Goan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.311-314
    • /
    • 2005
  • Supply chain optimization is one of the most important components in the optimization of a company's value chain. This paper considers the problem of designing the supply chain for a product that is represented as an assembly bill of material (BOM). In this problem we are required to identify the locations at which different components of the product arc are produced/assembled. The objective is to minimize the overall cost, which comprises production, inventory holding and transportation costs. We assume that production locations are known and that the inventory policy is a base stock policy. We first formulate the problem as a 0-1 nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables.

  • PDF

Integer Programming Model and Heuristic on the Guided Scrambling Encoding for Holographic Data Storage (홀로그래픽 저장장치에 대한 GS 인코딩의 정수계획법 모형 및 휴리스틱)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.656-661
    • /
    • 2013
  • In Guided Scrambling (GS) encoding for the holographic storage, after scrambling augmented source word into codeword, the best codeword satisfying modulation constraint is determined. Modulation constraints considered in this paper are strength which is the minimum number of transition between '0' and '1' in each row and column of codeword array and the symbol balancedness of codeword array. In this paper, we show that GS encoding procedure can be formulated as an integer programming model and develop a fast neighborhood search heuristic for fast computation of control bits. In the simulation, we compared the performance of heuristic algorithm with the integer programming model for various array and control bit size combinations.

Daily Unit Commitment Scheduling of Power System with Energy Storage System (전력저장장치를 고려한 일간 최적 기동정지계획 수립연구)

  • Song, Ha-Na;Jang, Se-Hwan;Kim, Hyeong-Jung;Roh, Jae-Hyung;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.717-725
    • /
    • 2011
  • In the power system with an electric storage system that can increase utilization rate of the source of such new renewable energy, this paper introduces the approach on the daily unit commitment scheduling that determines simultaneously optimum operational condition and output of thermal generators and electric storage device. The unit commitment is one of the most important issues in economic operation and security of short-term operational plan of the power system. It is to determine on/off status of generator to minimize operational cost during the given period. The committed generator should satisfy various operational limitation such as estimated demand by system, spinning reserve condition within minimum operational cost. In order to determine on/off or charge/discharge/idle condition and output level of units and electric storage system, the MILP(Mixed Integer Linear Programming) is suggested. The proposed approach is the mixed method between LP(Linear Programming) and IP(integer programming) which seeks the value of real number and integer that maximize or minimize function objective within given condition. The daily unit commitment problem with the electric storage system is applied to MILP algorithm through linearization and formulation process. The proposed approach is applied to the test system.