For an arbitrary integer x, an integer of the form $$T(x)={\frac{x^2+x}{2}}$$ is called a triangular number. Let α1, ... , αk be positive integers. A sum ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=\{\alpha}_1T(x_1)+\,{\cdots}\,+{\alpha}_kT(x_k)$ of triangular numbers is said to be almost universal with one exception if the Diophantine equation ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=n$ has an integer solution (x1, ... , xk) ∊ ℤk for any nonnegative integer n except a single one. In this article, we classify all almost universal sums of triangular numbers with one exception. Furthermore, we provide an effective criterion on almost universality with one exception of an arbitrary sum of triangular numbers, which is a generalization of "15-theorem" of Conway, Miller, and Schneeberger.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.11a
/
pp.127-133
/
2006
Minimizing the total number of setup changes of a machine increases the throughput and improves the stability of a production process, and as a result enhances the product quality. In this context, we consider a new product-mix problem that minimizes the total number of setup changes while producing the required quantities of a product over a given planning horizon. For this problem, we develop a mixed integer programming model. Also, we develop an efficient heuristic algorithm to find a feasible solution of good quality within reasonable time bounds. Computational results show that the developed heuristic algorithm finds a feasible solution as good as the optimal solution in most test problems. Also, we developed a web based scheduling and monitoring system for a zinc alloy production process using the developed heuristic algorithm. By using this system, we could find a monthly zinc alloy production schedule that significantly reduces the total number of setup changes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2816-2830
/
2022
Number Theoretic Transform (NTT) is a method to design efficient multiplier for large integer multiplication, which is widely used in cryptography and scientific computation. On top of that, it has also received wide attention from the research community to design efficient hardware architecture for large size RSA, fully homomorphic encryption, and lattice-based cryptography. Existing NTT hardware architecture reported in the literature are mainly designed based on radix-2 NTT, due to its small area consumption. However, NTT with larger radix (e.g., radix-4) may achieve faster speed performance in the expense of larger hardware resources. In this paper, we present the performance evaluation on NTT architecture in terms of hardware resource consumption and the latency, based on the proposed radix-2 and radix-4 technique. Our experimental results show that the 16-point radix-4 architecture is 2× faster than radix-2 architecture in expense of approximately 4× additional hardware. The proposed architecture can be extended to support the large integer multiplication in cryptography applications (e.g., RSA). The experimental results show that the proposed 3072-bit multiplier outperformed the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also costs about 40% more LUTs and 77.8% more DSPs resources.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.762-763
/
2016
In realizing a homomorphic encryption system, the operations of encrypt, decypt, and recrypt constitute major portions. The most important common operation for each back-bone operations include a polynomial modulo multiplication for over million-bit integers, which can be obtained by performing integer Fourier transform, also known as number theoretic transform. In this paper, we adopt and modify an algorithm for calculating big integer multiplications introduced by Schonhage-Strassen to propose an efficient algorithm which can save memory. The proposed architecture of number theoretic transform has been implemented on an FPGA and evaluated.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.9
/
pp.1207-1214
/
1995
We present an optimized integer cosine transform(OICT) as an alternative approach to the conventional discrete cosine transform(DCT), and its fast computational algorithm. In the actual implementation of the OICT, we have used the techniques similar to those of the orthogonal integer transform(OIT). The normalization factors are approximated to single one while keeping the reconstruction error at the best tolerable level. By obtaining a single normalization factor, both forward and inverse transform are performed using only the integers. However, there are so many sets of integers that are selected in the above manner, the best OICT matrix obtained through value minimizing the Hibert-Schmidt norm and achieving fast computational algorithm. Using matrix decomposing, a fast algorithm for efficient computation of the order-8 OICT is developed, which is minimized to 20 integer multiplications. This enables us to implement a high performance 2-D DCT processor by replacing the floating point operations by the integer number operations. We have also run the simulation to test the performance of the order-8 OICT with the transform efficiency, maximum reducible bits, and mean square error for the Wiener filter. When the results are compared to those of the DCT and OIT, the OICT has out-performed them all. Furthermore, when the conventional DCT coefficients are reduced to 7-bit as those of the OICT, the resulting reconstructed images were critically impaired losing the orthogonal property of the original DCT. However, the 7-bit OICT maintains a zero mean square reconstruction error.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.613-616
/
2000
This paper considers the problem of subway crew scheduling. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper, we propose two basic techniques that solve the problem in a reasonable time, though the optimality of the solution is not guaranteed. To reduce the number of variables, we adopt column-generation technique. We could develop an algorithm that solves column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational results show column-generation makes the problem of treatable size, and variable fixing enables us to solve LP relaxation in shorter time without a considerable increase in the optimal value. Finally, we were able to obtain an integer optimal solution of a real instance within a reasonable time.
Let n be any positive integer and ${\mathbb{Z}}_n=\{0,1,{\cdots},n-1\}$ be the ring of integers modulo n. Let $X_n$ be the set of all nonzero, nonunits of ${\mathbb{Z}}_n$, and $G_n$ be the group of all units of ${\mathbb{Z}}_n$. In this paper, by investigating the regular action on $X_n$ by $G_n$, the following are proved : (1) The number of orbits under the regular action (resp. the number of annihilators in $X_n$) is equal to the number of all divisors (${\neq}1$, n) of n; (2) For any positive integer n, ${\sum}_{g{\in}G_n}\;g{\equiv}0$ (mod n); (3) For any orbit o(x) ($x{\in}X_n$) with ${\mid}o(x){\mid}{\geq}2$, ${\sum}_{y{\in}o(x)}\;y{\equiv}0$ (mod n).
Let $T_aD_b(n)$ and $T_aD^{\prime}_b(n)$ denote respectively the number of representations of a positive integer n by $a(x^2-x)/2+b(4y^2-3y)$ and $a(x^2-x)/2+b(4y^2-y)$. Similarly, let $S_aD_b(n)$ and $S_aD^{\prime}_b(n)$ denote respectively the number of representations of n by $ax^2+b(4y^2-3y)$ and $ax^2+b(4y^2-y)$. In this paper, we prove 162 formulas for these functions.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.3
/
pp.637-647
/
2010
This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division of 2w bit integer N and w bit integer D. An algorithm suggested of the research, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of $\frac{1}{D}$, '$1.g{\times}2^{-L}$', which satisfies '$0.d{\times}1.g=1+e$, e < $2^{-w}$', is defined as over reciprocal number and the dividend N is segmented in small word more than 'w-3' bit, and partial quotient is calculated by multiplying over reciprocal number in each segmented word, and quotient of double precision integer division is evaluated with sum of partial quotient. The algorithm suggested in this paper doesn't require additional correction, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.2
/
pp.107-112
/
2011
It is very difficult to factorize composite number, $n=pq$ to integer factorization, p and q that is almost similar length of digits. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$ (mod $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$) and deciding factor base, B. This paper proposes a efficient algorithm. The proposed algorithm extracts B from integer factorization with 3 digits prime numbers of $n+1$ and decides f, the combination of B. And then it obtains $x$(this is, $a=fxy$, $\sqrt{n}$ < $a$ < $\sqrt{2n}$) from integer factorization of $n-2$ and gets $y=\frac{a}{fx}$, $y_1$={1,3,7,9}. Our algorithm is much more effective in comparison with the conventional Fermat algorithm that sequentially finds $\sqrt{n}$ < $a$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.