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ALMOST UNIVERSAL SUMS OF TRIANGULAR NUMBERS
WITH ONE EXCEPTION

JANGWON Ju

2
ABSTRACT. For an arbitrary integer z, an integer of the form T'(z) = %

is called a triangular number. Let a1, ..., ar be positive integers. A sum
Aoy, o (@1, .. m,) = a1T(z1) + -+ - + o T () of triangular numbers
is said to be almost universal with one exception if the Diophantine equa-
tion Aqy,...,ay(Z1,-..,Tk) = n has an integer solution (z1,...,x) € 7k
for any nonnegative integer n except a single one. In this article, we
classify all almost universal sums of triangular numbers with one excep-
tion. Furthermore, we provide an effective criterion on almost universality
with one exception of an arbitrary sum of triangular numbers, which is a
generalization of “15-theorem” of Conway, Miller, and Schneeberger.

1. Introduction

In 1770, Lagrange proved that every nonnegative integer can be written as
a sum of at most four squares of integers. Motivated by Lagrange’s four-square
theorem, Ramanujan provided a list of 55 candidates of diagonal quaternary
integral quadratic forms that represent all nonnegative integers (for details,
see [15]). Dickson pointed out that the diagonal quaternary quadratic form
22 + 2y + 522 + 5t? in Ramanujan’s list doesn’t represent the integer 15, and
confirmed that Ramanujan’s assertion is correct for all the other 54 quadratic
forms (for details, see [5]).

Ramanujan’s assertion was generalized to find all universal quaternary qua-
dratic forms, i.e., those representing all nonnegative integers. This was com-
pletely solved by Conway, Miller, and Schneeberger in 1993. They proved the
so called “15-theorem”, which states that a positive definite integral quadratic
form is universal if and only if it represents the integers

1, 2, 3, 5, 6, 7, 10, 14, and 15,
irrespective of its rank. Moreover, they provided a complete list of 204 qua-

ternary quadratic forms with this property. Recently, Bhargava provided an
elegant proof of the 15-theorem in [1].
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As a natural generalization of the 15-theorem, Bhargava and Hanke [2]
proved the so-called “290-theorem”, which states that every positive definite
integer-valued quadratic form is universal if and only if it represents the integers

1,2, 3,5, 6,7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,
30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.

Here a quadratic form f(z1,z9,...,z,) = Zlgi,an aijx;x; (a;; = aj;) is called
integralif a;; € Z for any i, j, and is called integer-valued if a;; € Z and a;;+a;; €
Z for any i, j. Moreover, they provided a complete list of 6436 such forms in
four variables.

A next natural generalization of Ramanujan’s assertion is to classify all qua-
dratic forms representing all nonnegative integers with finitely many exceptions.
A quadratic form with this property is said to be almost universal. At first, by
using an escalation method, in [6] Halmos provided a list of 88 candidates of
almost universal diagonal quaternary quadratic forms with one exception. It
was pointed out that diagonal quaternary quadratic forms x2 + 3% + 222 + 22t
and 22 4 2y? + 422 + 22t? in Halmos’s list don’t represent two integers 14
and 78. Halmos proved that 85 of those indeed represent all nonnegative in-
tegers except a single one. Moreover, he conjectured that the remaining form
22 + 2y% + 722 + 1312 represents all nonnegative integers except 5, and it was
proved by Pall in [14].

In 2009, Bochnak and Oh [3] provided an effective characterization for de-
ciding whether a positive definite integral quaternary quadratic form represents
all nonnegative integers with finitely many exceptions. It can be considered as
the final solution to the problem first addressed by Ramanujan in [15].

In this paper, we investigate representations by sums of triangular numbers.
The n-th triangular number is the number of dots in the triangular arrangement
with n dots on a side. More precisely, the n-th triangular number is defined by

n?+n
T(n) =
() = "
for any nonnegative integer n. Note that {T'(z) : x e Nu{0}} = {T(x) : x € Z}.
For positive integers aq, ..., ai, we say a sum

Ay an(@1, o zk) = a1 T(x1) + -+ + o T (xg)
of triangular numbers represents a nonnegative integer n if the Diophantine
equation
Aal,...,ak (1'1, LR xk) =n

has an integer solution (x1,...,zx) € Z*. Furthermore, a sum

Aalvwvak (mla v axk) (simply, AOél,»---,Oék-)

of triangular numbers is called universalif it represents all nonnegative integers.

The famous Gauss’ triangular theorem states that every positive integer can
be expressed as a sum of three triangular numbers which was first asserted by
Fermat in 1638. In 1862, Liouville proved that for positive integers a, b, and
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¢ (a <b<e),asum Ayy, of triangular numbers is universal if and only if
a, b, ¢) is one of the following triples:

(1,1,1), (1,1,2), (1L,1,4), (1,1,5), (1,2,2), (1,2,3), and (1,2,4),

which is a generalization of Gauss’ triangular theorem.

In 2013, Bosma and Kane proved the triangular theorem of eight which states
that for positive integers aq,..., oy, an arbitrary sum Ay, .. o, of triangular
numbers is universal if and only if it represents 1,2,4, 5, and 8 (for details, see
[4]). This might be considered as a natural generalization of the “15-theorem”
of Conway, Miller, and Schneeberger.

For positive integers ay,..., 0, a sum Ay, . o, of triangular numbers is
called almost universal if it represents all nonnegative integers with finitely
many exceptions. Especially, if a sum of triangular numbers represents all
nonnegative integers except a single one, then it is said to be almost universal
with one exception. Furthermore, it is called proper if any proper partial sum
of it doesn’t represent at least two nonnegative integers.

We know that if a sum A, . q, of triangular numbers is almost universal
with one exception m, then m is inside {1,2,4, 5,8} by the triangular theorem
of eight. By using an escalation method, we give a complete list of candidates
of 490 proper almost universal sums of triangular numbers with one exception,
actually, the numbers of ternary, quaternary, and quinary sums among them are
1, 235, and 254, respectively. We classify all almost universal sums of triangular
numbers with one exception 1,2,4,5, and 8, respectively. Furthermore, we
provide an effective criterion on almost universality with one exception of an
arbitrary sum Ag, . «, of triangular numbers. This might be considered as a
natural generalization of the 15-theorem of Conway, Miller, and Schneeberger.

Theorem 1.1. A sum of triangular numbers is almost universal with one
exception 1 if and only if it represents the integers
2, 3, 4, 8, 10, 16, and 19

and doesn’t represent 1. There are exactly 29 proper almost universal sums of
triangular numbers with one exception 1, actually, there are 11 quaternary and
18 quinary ones (see Table 1).

Theorem 1.2. A sum of triangular numbers is almost universal with one
exception 4 if and only if it represents the integers

1, 2, 11, 14, 19, 25, 29, 46, and 50
and doesn’t represent 4. There are exactly 138 proper almost universal sums

of triangular numbers with one exception 4, actually, there are 127 quaternary
and 11 quinary ones (see Table 2).

Theorem 1.3. A sum of triangular numbers is almost universal with one
exception 5 if and only if it represents the integers

1, 2, 8, 14, 26, 40, 41, 47, 59, and 71
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and doesn’t represent 5. There are exactly 171 proper almost universal sums of
triangular numbers with one exception 5, actually, there are 56 quaternary and
115 quinary ones (see Table 10).

Theorem 1.4. A sum of triangular numbers is almost universal with one
exception 8 if and only if it represents the integers

1, 2, 5, 17, and 89

and doesn’t represent 8. There are exactly 80 proper almost universal sums of
triangular numbers with one exception 8, actually, there are 7 quaternary and
73 quinary ones (see Table 13).

Note that the sum A; 45 of triangular numbers is the unique candidate of
ternary almost universal sums of triangular numbers with one exception (see
Section 7). In [10], Kane proved that Ay 4 5 represents all positive odd integers
under the assuming GRH for L-functions of weight 2 newforms. We conjecture
that it represents all nonnegative integers except 2. Actually, we checked that
A1 45 represents all nonnegative integers up to 107 except 2.

Conjecture 1.5. The ternary sum Ay a5 of triangular numbers is almost uni-
versal with one exception 2.

Assume that Conjecture 1.5 is true. Then we have the following theorem.

Theorem 1.6. If Conjecture 1.5 is true, then a sum of triangular numbers is
almost universal with one exception 2 if and only if it represents the integers

1, 4,5, 7, 8,9, 11, 16, 17, 20, 29, and 35

and doesn’t represent 2. There are exactly 72 proper almost universal sums of
triangular numbers with one exception 2, actually, there are unique ternary, 34
quaternary, and 37 quinary ones (see Table 15).

The complete list of proper almost universal sums of triangular numbers
with one exception is given in Tables 1, 2, 10, 13, and 15. In the above tables,
each sum of triangular numbers having a dagger mark with the last coefficient
is almost universal with one exception that is not proper.

Let f(x1,29,...,2%) = Z1<i,j<k a;;x;xy (a;j = aj; € Z) be a positive definite
integral quadratic form. The corresponding integral symmetric matrix of f is
defined by M; = (a;;) and any matrix isometric to it is denoted by M/ also.
For a diagonal quadratic form f(x1,22,...,2%) = a127 + a2x3 + - - - + agas, we
simply write

Mf = <ala az, ..., ak>'
For an integer n, we say n is represented by f if the equation f(x1,zo,...,zr) =
n has an integer solution (x1,xs,...,2) € ZF, which is denoted by n — f.
The genus of f, denoted by gen(f), is the set of all quadratic forms that are
isometric to f over the p-adic integer ring Z, for any prime p. The number of
isometry classes in gen(f) is called the class number of f and denoted by A(f).
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A good introduction to the theory of quadratic forms may be found in [13],
and we adopt the notations and terminologies from this book.

2. General tools
For positive integers aq, ..., a, we define
Ay an(@r, o zk) =oaT(z1) + - - + apT (k).
Recall that a sum

Agyan (@1, . k) (simply, Ag,. o ax)

of triangular numbers is called almost universal if it represents all nonnegative
integers with finitely many exceptions. In particular, if the number of excep-
tions is one, then it is said to be almost universal with one exception, which is
equivalent to the existence of an integer solution (z1,...,z3) € ZF of

a1 (21 + 12+ a2 + 1) =8n+ay + -+

for any nonnegative integer n except a single one. Furthermore, this is equiva-
lent to the existence of an integer solution (1, ...,z3) € ZF of

(1) alm%-l—----i-akxi=8n+a1+---+akwithx1-~-xk51 (mod 2)

for any nonnegative integer n except a single one.

Now, we introduce our strategy to prove that a sum Ay, o, (k= 4) of tri-
angular numbers is almost universal with one exception. At first, take a suitable
ternary section Aq, ai,,a:, Of Doy, ay, Where {ai,, iy, a5} < {ag, ..., i}
Without loss of generality, we may assume that Aa, a0, = Data,05- W
consider the equation

(2) alm% + agxg + a3x§ =8n + a1 + a2 + a3 with 212925 = 1 (mod 2).

Note that Equation (2) corresponds to the representations by a ternary qua-
dratic form with congruence conditions. Since there are some methods for
determining the existence of representations of integers by a ternary quadratic
form, we try to find a suitable method on reducing Equation (2) to the rep-
resentations of a ternary quadratic form, denoted by f(z1,22,23), without
congruence conditions. To explain our method, for example, assume that
a; = ag =0 (mod 2) and g = 1 (mod 2). Then Equation (2) has an in-
teger solution if

(3) f(z1,20,23) = a1(x3 —221)* + ag(z3 — 215)* +oz3x§ =8n+a; +asy+as

has an integer solution. Hence, in this case, the problem can be reduced to the
representations of a ternary quadratic form without congruence conditions.
After that for sufficiently large n, we find suitable ay, ..., ax € Z such that

(i) aq---ar =1 (mod 2);
(4) (i) 8n+ag+- - +ap— (auad + -+ agal) = 0;
(i) 8n+ai+ -+ ap — (aua? + -+ apai) — f(x1, 22, 23).
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Then we know that Equation (1) has an integer solution. Finally, we directly
check that the sum Ag, s, ..o, Of triangular numbers represents all remaining
small integers except a single one.

The work of Oh [11,12], and work of Oh and the author [8] led to the devel-
opment of a method that determines whether or not integers in an arithmetic
progression are represented by some particular ternary quadratic form. We
briefly introduce this method for those who are unfamiliar with it.

Let d be a positive integer and let a be a nonnegative integer (a < d). We
define

Sde ={dn+a|neNu{0}}.
For two positive definite integral ternary quadratic forms f, g, we define
R(g,d,a) = {ve (Z/dZ)* | vM,* = a (mod d)}
and
R(f,g,d) = {T € M3(Z) | T*M;T = d*M,}.

Since f and g are positive definite, the above two sets are always finite. A
coset (or, a vector in the coset) v € R(g,d,a) is said to be good with respect to
fsg,d, and a if there is a T' € R(f, g,d) such that é -vT* € Z3. The set of all
good vectors in R(g,d,a) is denoted by Ry(g,d,a). If R(g,d,a) = Rs(g,d,a),

we write
g <d,a f
Now, we introduce two theorems which play a crucial role in proving our
results.

Theorem 2.1. Under the same notations given above, if g <44 f, then
Sa.a N Qg) = Qf).

Proof. The theorem follows directly from Lemma 2.2 of [11] (see also Theorem
2.1 in [7]). O
Theorem 2.2. Assume that T € M3(Z) satisfies the following conditions:

(i) T has an infinite order;

(ii) T*M,T = d*M,;

(iii) for any vector v € Z* such that v (mod d) € By(g,d,a), 5 - vT" € Z3.
Then we have

Sa.a 0 Q(9\{g(2) - s* | s € Z} = Q(f),

where the vector z is any integral primitive eigenvector of T'.

Proof. See Theorem 2.1 of [8]. O

We define Bf(g,d,a) = R(g,d,a)\R¢(g,d,a) and its cardinality is denoted
by |Bs(g,d,a)|(simply, |B|). In general, if d is large, then it is hard to com-
pute the set Bf(g,d, a) exactly by hand. A MAGMA computer program for
computing this set is available upon request to the author.
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3. Proof of Theorem 1.1 and outline of the proofs of the other main
theorems

Let aq,...,ax be positive integers (k > 1). For positive integer n, the n-
th nonnegative integer that is not represented by Ay, .. o, is called the n-th
truant of A, ... o, and denoted by T, (Aq,,. ) if it exists. If T, (Aq,,. ox)
doesn’t exist, then we define T, (Aq,,... a,) = ©. We say every nonnegative
integer is less than oo for convenience.

For a sum A, o, of triangular numbers, without loss of generality, we
may assume that o; < -+ < ag. We say A, .., IS a candidate of almost
universal sums of triangular numbers with one exception m if it satisfies the
following conditions:

(1) Aq,,... o, doesn’t represent m;

% (Aaly-u,ai—l) if X (Aalxnwai—l)
‘EQ(AOQW-,C%FJ if s1 (Aa11«~~7a'i—1)

for all 1 < i <k, where T1(Aqy,...a;,) and F2(Aq, .. a, ) are defined above
when ¢ > 2 and we define T1(Aq, .0, ,) = 1 and T2(Aq,,.. . a;,) = 2 when
i = 1. Note that every almost universal sum of triangular numbers with one
exception m is contained in the set of all candidates of almost universal sums
of triangular numbers with one exception m.

We say an almost universal sum A, . o, of triangular numbers with one
exception is proper if for any proper subset {i1,...,4,} < {1,...,k}, the partial
sum Aml,..-,a . doesn’t represent at least two nonnegative integers.

<
(i) oy < g
=m

i

Proof of Theorem 1.1. Let o, ..., ap be positive integers. Assume that a sum
Ag, ...y of triangular numbers is almost universal with one exception 1. With-
out loss of generality, we may assume that a; < -+ < ag. From the definition
of the candidate of almost universal sums of triangular numbers with one ex-
ception, one may easily check that As is the unique candidate of unary almost
universal sums of triangular numbers with one exception 1. However, it doesn’t
represent 3. Since To(Aq) = 3, we know that there are exactly two candidates
A9 and Ag 3 of binary almost universal sums of triangular numbers withe one
exception 1. Note that

3 if (0(1, 042) = (2a 2)7
‘32(AO¢17O¢2) = . _

4 if (o, 2) = (2,3
Therefore, there are exactly four candidates

Ngoo, Aoz, Ayszsz, and Ajgzy

of ternary almost universal sums of triangular numbers with one exception
1. One may easily check that there are no ternary almost universal sums of
triangular numbers with one exception 1. Indeed, for each of the above four
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cases, the second truant is

3 if (a1, a2,a3) =(2,2,2),
10 if (a1, a9,a3) = (2,2,3),
5 Ta(A ) =
(5) 2( a1,0<270és) 4 if (aq,@9,a3) =(2,3,3),
8 (0417042,043) (2,374)~

Therefore, if Ay, as,a5,04 18 @ candidate of almost universal sums of triangu-
lar numbers with one exception 1, then Ay, a,.q, is a candidate of ternary
almost universal sums of triangular numbers with one exception 1 and agz <
as < To(Any,as,a5) from (5). So there are 17 candidates of quaternary almost
universal sums of triangular numbers with one exception 1. One may easily
check that 6 sums of them don’t represent at least two nonnegative integers.
Actually, we know that

(6)

(2,2,2,2),(2,2,3,9),
(2,3,3,3),(2,3,4,7),
19 if (a1,a0,as,a4)=1(2,2,3,3),

16 if (a1,a0,a3,04) =1(2,2,3,6).

‘IQ(Aal,az,O@) if (alaa2aa3>a4) =

‘3:2(Aa1,a2,a3,a4) =

We will prove that remaining 11 quaternary candidates represent all nonnega-
tive integers except 1 (see Table 1).

Now, we classify all candidates of quinary almost universal sums of triangu-
lar numbers with one exception 1. Assume that Aq, as,a5,a4,05 1S @ candidate
of quinary almost universal sums of triangular numbers with one exception
1. Then Ay, as,05,q4 15 one of the candidates of quaternary almost universal
sums of triangular numbers with one exception 1. If T2(An, ap,05,00) = O,
then it implies that Aq, ay 04,0, Tepresents all nonnegative integers except 1.
Therefore, a5 can be any integer greater than or equal to ay. In this case
Aqy 00,035,040 15 almost universal with one exception 1 but not proper. If
To(Aqy az,08,0,) # 0, then we have ay < a5 < Fa2(Aq, as,05,0,) from (6).
In this case, we have 36 candidates of quinary almost universal sums of tri-
angular numbers with one exception 1. One may easily check that there are
12 sums among them that are almost universal with one exception 1 but not
proper. Furthermore, if a5 = T2(Aq,,a5,0s,04) — 1 for each possible case, then
Aqy az,a3,04,05 18 DOt almost universal with one exception since it doesn’t rep-
resent 1 and To(Aq; as,0s.04). We will prove that remaining 18 quinary candi-
dates represent all nonnegative integers except 1 (see Table 1).

Finally, for k£ > 6, we classify all candidates of k-ary almost universal sums
of triangular numbers with one exception 1. Assume that A, . ., is a candi-
date of k-ary almost universal sums of triangular numbers with one exception
1. Then A, ... a,_, is one of the candidates of k — 1-ary almost universal sums
of triangular numbers with one exception 1. If To(Aq,,.  a,_,) = 0, then it

implies that Aq, .. .a,_, represents all nonnegative integers except 1. Therefore,
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oy, can be any integer greater than or equal to aj—;. In this case, Aq,,. . q, IS
almost universal with one exception 1 but not proper. If To(Aq,, oy ,) # 0,
then ap—1 < ap < ag—1 + 1 since T2(Aq,y,.0py) = k-1 + 1. Note that
Aqs,..ap_1,a,_, 15 Dot almost universal with one exception since it doesn’t rep-
resent 1 and a1 +1. Furthermore, Ay, . oy 1,0k ;+1 iS almost universal with
one exception 1 but not proper since Aq, as,a5,ak 141 OF Day,as,as,04,06_1+1 1S
already almost universal with one exception 1 for each possible case (see Table
1). Therefore, there are no k-ary proper almost universal sums of triangular
numbers with one exception 1 for any integer k > 6 (see Table 1).

Now, we prove that above 11 quaternary and 18 quinary sums of triangular
numbers are proper almost universal with one exception 1. In all cases, it is
enough to show that each sum represents all nonnegative integers except 1 since
its properness is clear.

TABLE 1. Proper almost universal sums with one exception 1

Sums ‘Candidates ‘Conditions on

Ag, ‘a1=2 ‘alaéQ

Asa, ‘2<a2<3 ‘a27é2,3

AV R 2<az3<3 asg # 2,3

A23 0y 3<az<4 as # 3,4

As22.0, 2<as <3 ay # 2

A223.04 3<ay <10 a4 # 3,6,9

A2 3304 3<ay <4 oy # 3

A2 3404 4<ay<8 oy # 7

Aot as,as,00,05 | Dar,as,0s,0q 15 @ candidate, as # al, ag +17,. ..
To(Aoy,an,as,04) = 0, Q5 = 0y

D222 a5 2<a5<3 as # 2,37

A22.33,a5 3< a5 <19 as # 47,57 71,87, 107,18

A2.2,3,6,05 6 < a5 <16 as # 77,87,107,15

A2239,05 9< a5 <10 as # 9,107

A2333,a5 3< a5 <4 as # 3,47

A23.4.7,a5 7T<as<8 as # 7,81

Aqy,.on (B=6)|Aq,,.  a,, isa candidate, o # 041171,(1;@,1 +1f, ...
To(Aay, . apy) = 0, Q= Qg1

Aay,.an (B =6)|Aq,.. a., is a candidate, ap # ap_1,ap_1 + 17
To(Aay,.. an_y) # O,
ap_1 <o < a1+ 1
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(1) Let (a1, ag, a3) = (2,2,2). We show that Ag 5 2 3 is an almost universal sum
of triangular numbers with one exception 1. Since Aj ;1 ; is universal, Ag oo
represents all nonnegative even integers. Let n be an odd integer greater than
1. Since n — 3 is represented by Ag 22, n is represented by As 22 3. Therefore,
Az 223 is an almost universal sum of triangular numbers with one exception
1.
(ii) Let (ou, a2, a3) = (2,2,3). We show that Ag o34, (3 < oy < 10, ay #
3,6,9) are almost universal sums of triangular numbers with one exception 1.
Similarly in the proof of the case (i), since Aj 12, Aq 14, and Aq ;5 are uni-
versal, Az 234, Ag23s, and Ag g 310 are almost universal with one exception
1, respectively.

Assume that as is 5 or 7. Since the proofs are quite similar to each other,
we only provide the proof of Ag s 3 5. By Equation (1), it suffices to show that
the equation

(7) 227 4+ 2y* + 322 + 5t% = 8n + 12

has an integer solution (z,y,z,t) € Z* such that xyzt = 1 (mod 2) for any
nonnegative integer n except 1. If n = 0 or 2 < n < 4, then one may directly
check that Equation (7) has a desired integer solution. Therefore, we may
assume that n > 5. Note that the genus of f(x,vy,2) = 2(4x + y)? + 2y* + 322
consists of

17

For a nonnegative integer m, if m =7 (mod 8) and m # 32**1(3v + 2) for any
nonnegative integers u and v, then m is represented by My or M> by 102:5 of
[13], for it is represented by M/ over Z,, for any prime p. One may easily check
that

M; =(3,4,16) and M2—<4>J_<7 1).

M2 <8,7 Mf.
Note that 8n + 12 — 5d? = 7 (mod 8) and 8n + 12 — 5d% # 0 (mod 3), where

g 1 if 8n+12=0 (mod 3),
© |3 if8n+12%0 (mod 3).

Furthermore, since we are assuming n > 5, 8n+ 12 — 5d? is positive. Therefore,
the equation
222 + 29% + 322 = 8n + 12 — 5d°

has an integer solution (z,y, z) € Z3 such that z = y (mod 4) by Theorem 2.1.
This completes the proof.

(iif) Let (a1, a2, a3) = (2,3,3). We show that Ag 334 is an almost universal
sum of triangular numbers with one exception 1. By Equation (1), it suffices
to show that the equation

(8) 222 + 3y* + 322 + 4% = 8n + 12

has an integer solution (z,y,z2,t) € Z* such that xyzt = 1 (mod 2) for any
nonnegative integer n except 1. The class number of f(z,y, z) = 222 +3y% + 322
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is one. For a nonnegative integer m, if m = 0 (mod 8) and m # 32*(3v + 1) for
any nonnegative integers v and v, then m is represented by f over Z, for any
prime p, in particular, it is primitively represented by f over Z,. Let 8n+ 12 =
32%(8k +4) for some nonnegative integers ¢ and k such that 8k +4 % 0 (mod 9).
If kK = 0, note that for any ¢ > 1,

23717 + 33712+ 3(3°)2 +4(371)? =4 3%
If k = 2, note that for any ¢ > 1,
2(7-3 12 +3(5-3 12 + 33712 + 4(371)2 = 20 3%,
One may directly check that if 0 < k < 12, k£ # 0,2, then the equation
222 + 3y% + 322 + 4t = 8k + 4

has an integer solution (z,y, z,t) € Z* such that zyzt = 1 (mod 2). Therefore
we may assume that & > 13. One may easily check that 8k + 4 — 4d? is
represented by f over Z, for any p, where

3 if8k+4=r (mod?9) for any r € {2,3,5,6, 8},
d=<1 if 8 +4=r (mod9) for any r € {1, 7},
5 if 8k +4=4 (mod9),

in particular, it is primitively represented by f over Zs. Furthermore, since we
are assuming k > 12, 8k + 4 — 4d? is positive. By 102:5 of [13], the equation

222 + 3% + 32 = 8k + 4 — 4d?

has an integer solution (z,y, z) € Z3 such that xyz = 1 (mod 2). This completes

the proof.

(iv) Let (a1, a9,a3) = (2,3,4). We show that Aos4.4, (4 <aq <8 ag #7)

are almost universal sums of triangular numbers with one exception 1. Sim-

ilarly in the proof of case (i), since Ay 22, Aj23, and Aq 24 are universal,

Ag 344, Na346, and Ay 345 are almost universal with one exception 1.
Assume ay = 5. By Equation (1), It suffices to show that the equation

(9) 222 + 3y? + 422 + 5t = 8n + 14

has an integer solution (z,y,z,t) € Z* such that xyzt = 1 (mod 2) for any
nonnegative integer n except 1. If n = 0 or 2 < n < 218, then one may directly
check that Equation (9) has a desired integer solution. Therefore we may
assume that n > 219. Note that the genus of f(z,y,t) = 2(2z + y)? + 3y? + 5t2
consists of

Mf—G é>L<5> and M, = (1,1,120).

For a nonnegative integer m, if m = 2 (mod 8) and m # 0 (mod 3), then m is
represented by My or My by 102:5 of [13], for it is represented by M over Z,
for any prime p. One may easily check that

Mg <7,r Mf



942 J. JU

for any r € {0,3,5,6}. Assume that 81 + 14 £ 0 (mod 3). Note that 8n + 14 —
4d? = 2 (mod 8), 8n + 14 — 4d? # 0 (mod 3), and 8n + 14 — 4d? = r (mod 7)
for some r € {0,3,5,6}, where
21 if 8n+ 14 =r (mod 7) for any r € {0, 3,5, 6},
d=<3 if8n+14=7r (mod 7) for any r € {1,4},
9 if8n+14=2 (mod 7).

Assume that 8n + 14 = 0 (mod 3). Note that 8n + 14 — 4d® = 2 (mod 8),
8n+14—4d? # 0 (mod 3), and 8n+14—4d? = r (mod 7) for some r € {0,3,5, 6},
where
7 if 8+ 14 =7 (mod 7) for any r € {0, 3,5, 6},
d=<1 if8n+ 14 =7 (mod 7) for any r € {2,4},
5 if8n+14=1 (mod 7).

Furthermore, since we are assuming n > 219, 8n + 14 — 4d? is positive. There-
fore, the equation

222 + 3y + 5t2 = 8n + 14 — 4d?
has an integer solution by Theorem 2.1. This completes the proof.

To explain our main method that determines whether or not integers in
an arithmetic progression are represented by some particular ternary quadratic
form, we give another proof for almost universality of Ay 3 4,4 by using Theorem
2.2. By Equation (1), it suffices to show that the equation
(10) 227 + 3y + 42> + 4t* = 8n + 13
has an integer solution (w,y,z,t) € Z* such that xyzt = 1 (mod 2) for any
nonnegative integer n except 1. If n = 0 or 2 < n < 11, then one may directly
check that Equation (10) has a desired integer solution. Therefore, we may
assume that n > 12. Note that the genus of f(z,y,2) = 222 + 3y? + 422
consists of

flz,y,2) and g(x,y,2) = x? + 2y + 1222,
For a nonnegative integer m, if m = 1 (mod 8), then m is represented by M;
or My by 102:5 of [13], for it is represented by My over Z, for any prime p.
One may easily show that

Bs(g,5,1) = {£(1,0,0)} and By(g,5,4) ={£(2,0,0)}.

In each case, if we define

50 0
T=10 1 —12],
02 1

then one may easily show that it satisfies all conditions in Theorem 2.2. Note
that z = +(1,0,0) are the only integral primitive eigenvectors of T'. Therefore,
we have

S5 0 Q9)\{s?|s € Z} < Q(f)
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for any r € {1,4}. Since g is contained in the spinor genus of f, every square
t2 of an integer that has a prime divisor greater than 3 is represented by f by
Lemma 2.4 in [9]. If ¢ is divisible by 2 (3), then #? is represented by f since
4 (9, respectively) is represented by f. Therefore, every integer greater than 1
that is congruent to 1 modulo 8 and congruent to 1 or 4 modulo 5 is represented
by f. Note that 8n + 13 — 4d? is congruent to 1 modulo 8 and congruent to 1
or 4 modulo 5, where

1 if 8n + 13 =r (mod 5) for any r € {0, 3},
d=15 if 8+ 13 =r (mod 5) for any r € {1,4},
3 if 8n +13 =2 (mod 5).

Furthermore, since we are assuming n > 12, 8n + 13 — 4d? > 2. Therefore, the
equation

222 + 3y% + 422 = 8n + 13 — 4d>

has an integer solution. This completes the proof.

(v) Let (a1, a0,a3,a4) = (2,2,3,3). We show that Az 2334, (3 < a5 <19,
as #4,5,7,8,10,18) are almost universal sums of triangular numbers with one
exception 1.

Assume a5 = 3. Since Ay 11 is universal, Az 3 3 represents every nonnegative
integer divisible by 3. If 2 < n < 4, then one may easily check that n is
represented by As2333. Assume n > 5. Then one may easily check that
n — ¢ — d is represented by As 3 3, where

(0,0) if n=0 (mod 3),
(¢,d) =<1(2,2) ifn=1 (mod 3),
(2,0) if n=2 (mod 3).
Therefore, Ay 5 3 3.5 is almost universal with one exception 1. Similarly, As 2535,
Ag 23312, and Ay 23315 are almost universal with one exception 1.
If a5 £ 0 (mod 3), then the proofs are quite similar to the proof of Ag o35
in the case (ii).
Assume that a5 = 9. By Equation (1), it suffices to show that

(11) 202 + 2y + 322 + 3t + 95 =8n + 19

has an integer solution (,y, z,t,s) € Z° such that xyzts = 1 (mod 2) for any
nonnegative integer n except 1. Let 8n+19 = 3%(8]6 + 3) for some nonnegative
integers ¢ and k such that 8k + 3 % 0 (mod 9). For the case when & = 0, note
that for any ¢ > 2,

232 +2(371)2 + 30317 +3(31)? +9(37%)* = 3. 3%
For the case when k& = 1, note that for any ¢ > 1,

2392 +2(39)% + 3(39)% + 3(39)2 + 9(3°"1)2 = 11 - 32
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If kK = 2,4, then one may directly check that the equation
202 + 2% + 322+ 3t + 95 =8k + 3

has an integer solution (z,y, z,t,s) € Z® such that xyzts = 1 (mod 2). There-
fore, we may assume that k > 5. Note that 8k +3 —3d? —9e? = 7 (mod 8) and
8k + 3 — 3d? — 9e? # 324+1(3v +2) for any nonnegative integers u and v, where

(1,1) if 8k + 3 % 0 (mod 3),
(d,e) =< (3,1) if 8k +3 =3 (mod 9),
(1,1) if8k+3 =06 (mod9).

Furthermore, since we are assuming that k > 5, 8k 4+ 3 — 3d? — 9¢? is positive
and it is represented by 2(4x + y)? + 2y? + 322 (see the proof of Ag 535 in the
case (ii)). Therefore, the equation

222 + 2y% + 322 = 8k + 3 — 3d% — 9¢2

has an integer solution such that 2 = y (mod 4). This completes the proof.
(vi) Let (o1, a0,a3,04) = (2,2,3,6). We show that Ass36a; (6 < a5 <
16, a5 # 7,8,10,15) are almost universal sums of triangular numbers with one
exception 1. Similarly as in the proof of case (v), since Azg¢, Aseo, and
As .12 represent all nonnegative integers divisible by 3, As 2336, N2236.9,
and A9 36,12 are almost universal with one exception 1.

If a5 £ 0 (mod 3), then the proofs are quite similar to the proof of Ag o35
in the case (ii). This completes the proof.

Now, we give a proof of the first statement of Theorem 1.1. For positive
integers ay, ..., ax, assume that a sum Ay, o,,...q, of triangular numbers rep-
resents the integers

k

2, 3, 4, 8, 10, 16, and 19

and doesn’t represent 1. By using the same escalation method to the above, we
know that there is a subset {41, ig, i3,44} of {a, ..., ax} such that Ao, iy g0,
is contained in the above 11 quaternary proper almost universal sums of trian-
gular numbers with one exception 1, or a subset {j1, jo, js, ja, J5} of {@1, ..., g}
such that Aan RPR PN contained in the above 18 quinary ones. There-
fore, Aq, ... a, represents all nonnegative integers except 1. This completes the
proof. O

The proofs of Theorems 1.2, 1.3, 1.4, and 1.6 are quite similar to the proof
of Theorem 1.1. In each proof, by using an escalation method, we find all
candidates of proper almost universal sums of triangular numbers with one
exception 4, 5, 8, and 2, respectively. Furthermore, we show that each candidate
Aq, ....a, (k=4,5) represents all nonnegative integers except a single one. To
show this, we take a suitable ternary quadratic form f(x1,xs,x3) related with
ternary section Aail,aiz,a@, of Ay, ..« like in Equation (3). After that for
sufficiently large integer n, we find integers ay, ..., ar € Z satisfying condition
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(4). Finally, we directly check that A,, . ., represents all remaining small
integers except a single one.

Note that in most cases, the class number of f is less than or equal to 2.
The methods for computations for representations of f are categorized into the
following three cases:

(i) if A(f) = 1, then one may easily compute the representations of f by
the local-global principle similarly to the proof of A 334 in the case
(iii) of Theorem 1.1;

(ii) if h(f) = 2 and |B| = |By(g,d, a)| = 0 for some integers d and a, where
g is the genus mate of f, then one may compute the representations of
f by Theorem 2.1 similarly to the proof of Ag s 35 in the case (ii) of
Theorem 1.1 (see also the proof of Ay 345 in the case (iv) of Theorem
1.1);

(iii) if A(f) = 2 and |B| # 0, then one may compute the representations of

f by Theorem 2.2 similarly to the second proof of Ay 344 in the case
(iv) of Theorem 1.1.

In the remaining sections, since most of proofs require laborious computa-
tion, we only provide all parameters for the computations for the representa-
tions of the ternary quadratic form f (see Sections 4, 5, 6, and 7). One may
easily apply the given parameters to the local-global principle, Theorem 2.1 or
Theorem 2.2 to compute the representations of the ternary quadratic form f.
We leave to the readers to find suitable integers auy, ..., ay stated above and
to check the representations of remaining small integers. For the complete list
of proper almost universal sums of triangular numbers with one exception, see
Tables 1, 2, 10, 13, and 15.

4. Proof of Theorem 1.2

We give a proof of Theorem 1.2. From a similar escalation method in the
proof of Theorem 1.1, we find all candidates of 127 quaternary and 11 quinary
proper almost universal sums of triangular numbers with one exception 4 (see
Table 2).

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary quadratic form f (see Tables 3, 4, 5, 6, 7, 8,
and 9).

5. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. From a similar escalation
method in the proof of Theorem 1.1, we find all candidates of 56 quaternary
and 115 quinary proper almost universal sums of triangular numbers with one
exception 5 (see Table 10). The proof of almost universality of each candi-
date is quite similar to the proof of Theorem 1.1 except for the cases when
(Oél7 a9, 043) = (1, 1, 8)
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TABLE 2. Proper almost universal sums with one exception 4

Sums ‘Candidates ‘Conditions on ay
Aom ‘0&1 =1 ‘041 # 1

Al,ou ‘()[2:2 ‘a27&2

INE [6<as <1l las #5,6,7,8,9,10,11
A125,a4 5<ay <19 ay # 10,15
A126,04 6 <ay <50 oy # 46

A12.7.04 T<oa4 <11 ag #T7

A12.8,04 8<ay <19 oy # 15

A129.a, 9< oy <46 g # 42
A1210,04 10< oy <14 ayg # 10
A12.11,04 11 <as <25 ay # 21

A(Yl sQ2, Q3,004,005

Ap, an,as,04) 18 a candidate,
T2(A(11,a2,(13,a4) = 0, 05 = (4

a5¢al,a4+lf,.‘.

A12.510,05

10< a5 <29

as # 117,127,137, 147, 167,
171,181,191, 25

A112,5115,a5 15 < a5 < 19 a5 # 15, 16T, 17T, 18T, 191r
A1 26,46, 46 < a5 < 50 s # 46,477, 487, 497, 507
A12,7,7,a5 T<as <11 as # 7,87,97,107, 117

A112,3115,a5 15 < a5 < 19 a5 # 15, 16T, 17T, 18T, 191r
ALQ,QAQ,&S 42 < Qs < 46 Qs # 42,431‘7 441‘45T,46T
A12,10,10,05 10< a5 <14 as # 10,117,127, 137, 14T
ALQJLQLQE‘ 21 < (0% < 25 Qs #* 21, 22T, 23T 24T, 25T

Agy.on (b =6)|Agy,..ar, is a candidate, oy, # 04;2»,1,(11«71 +1f,...
TQ(A(YI-,---,(W«—I) = 0, O = g1
Ag, ..., is a candidate,

44444 ak_]) # 00,

g1 < ap <oy +4

A“ly»«»a“k (k = 6) ap #ag_1+ 4

(¢ =0,1% 2f 37 47)

TABLE 3. Data for the proof of the candidates when (a1, aq, a3) = (1,2,5)

Aa” Qg s Qig

/
AVEX:
2?2 4+ 2y? +522‘ 1

Sufficient conditions for m — f

h(f)

m =0 (mod 8), m # 52%+1(5v £ 2)

Assume (aq, o, a3) = (1,1,8). We show that A1 150, (8 <as <41, ay #
30, 36) are almost universal sums of triangular numbers with one exception 5.
Since the proofs are quite similar to each other, we only provide the proof of
Ay 1,8 By Equation (1), it suffices to show that the equation

(12) 2 +y? +82° + 8% = 8n + 18

has an integer solution (z,y,z,t) € Z* such that xyzt = 1 (mod 2). If 0 <
n < 19, then one may directly check that Equation (12) has a desired integer
solution. Therefore, we may assume that n > 20. Note that the genus of
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TABLE 4. Data for the proof of the candidates when (a1, as, a3) = (1,2,6)

Qg A011,012=&z3 .. s
- - T Sufficient conditions
f h(f) |d a |B] .
form — f
M; M, z Q(z)
Qy 7‘é 0 (mod 5) A1_275
2z +y)? + 2y% + 622 2 m =1 (mod 8),
@z +y)” +2 20 513,17 | 0 0(23( )1)
3 1 m=0,2,3 (mod 5
146) (1,2,24)
1 3
ay = 10,20,40,45 AN 28 0 0
m > 1,
(2z + y)? + 2y* + 622 2 0 26 —36
28/ 1,9,25 |16 m =1 (mod 8),
31 0 3 26
1.¢6) (1,2,24) m=1,2,4 (mod 7)
13 +(1,0,0)| 1
Qy = 25, 30, 35 A172,5 52 0 0 m > 1,
(22 +y)? + 2y° + 622 2 o 1,9,17, 1% 0 46 -84 |lm=1 (mod 8),
5
31 25,29, 49 0 7 46 Jlm=1,3,4,9,10,
1¢6) (1,2,24)
+(1,0,0)] 1 12 (mod 13)
ay = 15,50 A1_276 1 9 %6 0 0 m>1,
,5,9,
2z +y)? + 2y% + 622 2 ' 0 74 —60 ||/m =1 (mod 8),
( y)? + 2y 76| 17.95.45, |16 ( )
31 0 5 74 /)im=1,45,6,7,9,11,
146) (1,2,24) 49,61,73
13 +(1,0,0)| 1 16,17 (mod 19)

TABLE 5. Data for the proof of the candidates when (a1, ag,az) = (1,2,7)

iy Aa, Qo G . ..
7 ;( f;’ 2 d B8] Sufficient conditions
) , a
form — f
M; M,
ag =10 A12,10
22 + 2% + 1012 1 m =5 (mod 8),
a '2 109 m # 0 (mod 5)
Qy = 8, 9, 11 A172,7
(27 +y)* +2y° + 727 2 10.26. 34 m =2 (mod 8),
- 2 0 180 50’ 66’ 74’ 0 |m=0,1,4 (mod 5),
(1 3) LD 0 2 1 Y m # 0 (mod 7)
1 1 15
flx,y,2) = 22 + (2y + 2)? + 822 consists of
1 0 0 2 01
M;={(0 4 2], M;=<(1,1,32), and Mz=|(0 2 1
0 2 9 1 1 9
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TABLE 6. Data for the proof of the candidates when (a1, as, a3) = (1,2,8)

4 A“’vo‘w"’w . ..
Sufficient conditions
f h(f) d a |B|
form — f
My M,
ag =10 A1210
m =5 (mod 8),
22 + 292 + 1012 1
m # 0 (mod 5)
1,2,10)
ay # 0 (mod 5) Ajog
22 +2(2y + 2)% + 822 2
m = 3 (mod 8),
3 —1 1\/40] 11,19,35 | 0
8 4 m=0,1,4 (mod 5)
L -1 3 1
4 10
1 1 9

TABLE 7. Data for the proof of the candidates when (ay, as, a3) = (1,2,9)

Qg A(‘x,l.ozmz.ry,‘5 N
- T Sufficient conditions
I h(f)y |4 e |IBI
form — f
My M, z ‘Q(z)
oy =21 A 921
m =17 (mod 8),
22 4+ 922 + 212 1
m=3"Bv+1),(u<1)
<1~, 9, 21>
ay # 0 (mod 7) ANEY)
(4z + 2)? + 2y* + 922 2
0,3, m =4 (mod 8),
4 0 21\|7 0
10 4 5,6 m=0,3,5,6 (mod 7)
&L 08 0
4 16
2 0 10
Qy = ]4, 28, 35 A11279 3 0 0
(4z + 2)% + 2y? + 922 2 9 4 3\|m>4,
4 0 2 110 3 9|/m=4 (mod38),
10 4 9/1,4,7| 6
&1L 08 0 0 —8 3/|m#2 (mod 3)
4 16
2 0 10 +(1,0,0)| 4

For an integer m, if m = 2 (mod 8), then m is represented by My, My, or M3 by
102:5 of [13], for it is represented by My over Z, for any prime p. Furthermore,
note that the spinor genus of f consists of unique class f, itself. One may easily
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TABLE 8. Data for the proof of the candidates when (aq, ae, a3) = (1,2, 10)

Aail ) Qig y g

Sufficient conditions for m — f

f

h(f)

A1,2,10

m =5 (mod 8),m # 0 (mod 5)

2% +2y° +1022] 1

TABLE 9. Data for the proof of the candidates when (aq, g, a3) = (1,2,11)

v AFZ [e3 [e3 o . .
(}4 l17(f) = dl o |1B| T Sufficient conditions
) " -
M; M, = [ Qe | !
a4 # 0 (mod 5) A1 211
2z 24 2y% + 1122 2
(2zty)” +2y" + 112 TN |20 2,10, 0 m =6 (mod 8),
<3 1>L<11> 16 2 18 m=0,2,3 (mod 5)
L3 1 2 6
Qy = 15 A1’2‘15 3 0 0 m> 2
@z +y)° + 22 + 1562 2 8 30 12N\~
0 —19 —144 m =2 (mod 8),
31 2 1 48 2,34 |384 m % 10,26 (mod 48),
15 124 ’ 1 —12
<1 3) {15y (1 3) @9 +(? o 0)5‘ m # 0 (mod 5)
ay =20 A1’272[] 1 -4 0
) 2 2
22+ 2% + 20t 2 sl 5 | (2) 1 g
0,0.1) 5 m =7 (mod 8),
— ’3" 0 =10 m # 0 (mod 5),
m # 3,6,7,10,12
1,2,2 2,4,5 s T
(1,2,20) @45 1y 1’42/ 2 (2 g g ) 13,19 (mod 21)
£(0,1,0)] 4
21 0 0
oy =25 A1
, , -32 32
(2 +y)? +2y? + 11272 2 10, 14, ;i 42 34 m =6 (mod 8),
. 1 51 1\ p22230(16) | S0 L) Im=13.49.10
(1 3) 11 16 2 38,42 12 (mod 13)
1 2 6 (0,1, )] 16

show that a positive integer a is a spinor exception of the genus of f only if
a = 2m? for some m € Z (for details, see [16]). Assume that
8n+18 -8 =2m? and 8n+ 18 —8-3% =2m3

for some my,ms € Z. Then 2m?} — 2m3 = 64. So (m1,m2) € {(9,7),(6,2)}.
However this is impossible since we are assuming n > 20. Therefore, one of the
integers 8n 4 18 — 8 or 8n + 18 — 8 - 32 is not spinor exception of the genus of
f, in fact, it is represented by f. This implies that the equation

22+ y? + 822 = 8n + 18 — 84>
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TABLE 10. Proper almost universal sums with one exception 5

Sums ‘Candidates ‘Conditions on ayg

Ay, ‘041 =1 ‘041 #1

Al,ag ‘052 =1 ‘ag #1

A 10, ‘6 <a3 <8 ‘(Xg #6,7,8

A1,1ﬁ6,(x4 6<ays <14 oy # 679

Ai17,04 7T<ay <26 g #7,14,21

A11.,8,04 8 < ay <41 ay # 30,36

Ay as,0s,00,05 | Dar,as,as,04) 18 @ candidate, a5 #al, o+ 17,

To(Aay,am,05,00) = 0, 05 = 0y

AL 1660 6 < as <59 as # 71, 87,107, 11F, 12F, 13T,
147,54

A1,176,9705 9 < a5 < 14 a5 # 9, 10T, 11T, 12T 13T, 14T

Ai1770s 7 <as <47 as # 87,97, 107, 117, 127, 13T,

15,16, 171, 181, 197, 207,
22F, 231, 247, 25T, 261, 42

A11,7,14,05 14 < a5 <40 as # 157,167, 177,187,197, 207,
22f 23f 24F 95t 267, 35
A11,7,21,05 21 < a5 <26 as # 21,227,237, 247 25T 267
A1 1830.as 30<as <7l as # 317,32, 337 34T 357 377,
387,397,407, 417, 66
A1,1,8,36,a5 36 < a5 <41 as # 36,377, 387,397,407, 417
Aoy,...on (k= 6)|Aq, . o) is a candidate, ay # O‘L_pak—l +11,...
Ta(Aay,agy) = 0, ap = Qg
Agyon(k=6)]Ag, . ap, 1s a candidate, g # g1+ 4
To(Aay,.asr) # 0, (¢ =0,1%,2f,3" 47 57)

Qp—1 <o < ap—1+95

has an integer solution (z,y, z) € Z3 for some d € {1, 3} such that y = 2 (mod 2).
This completes the proof.

Now, we show that A1 183045 (30 < a5 < 71, a5 # 31, 32, 33, 34, 35, 37,
38, 39, 40, 41, 66) are almost universal sums of triangular numbers with one
exception 5. Similarly as above, one may easily show that Aq ; g 30 represents all
nonnegative integers except 5 and 71. Therefore, every Aj 1.8 30,q, is an almost
universal sum of triangular numbers with one exception 5. This completes the
proof.

In the remaining cases, since the proof of the almost universality of each
candidate is quite similar to the proof of Theorem 1.1, we only provide all
parameters for the computations for representations of the ternary quadratic
form f (see Tables 11 and 12).

6. Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. From a similar escalation
method in the proof of Theorem 1.1, we find all candidates of 7 quaternary
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TABLE 11. Data for the proof of the candidates when (a1, as, a3) = (1, 1,6)

Oy Aa”.ai \Qin S . s
. ufficient conditions for m —
i h !
every case A1 _ 2u+1
Ty 62 7 m =0 (mod 8),m # 3 (Bv+1)
ay =12 A2 _ 2u+1
Py T i m =6 (mod 8), m # 3 Bv+2)

TABLE 12. Data for the proof of the candidates when (a1, as, a3) = (1,1,7)

A
iy Xig A T Sufficient conditions
i R Jdlo|1B] piient
M; M, z Q)
A15117 8 0 0 m > 1,
2z + )+ 27 + 727 2 m # 0 (mod 49),
06 —14)™7
88 1\g o ¢ Jm=1 (mod 8),
2,2,7) (1,2,14) m # T2 (Ty + 1)
i(l,U,O)‘ 1 for any r € {3, 5,6}

and 73 quinary proper almost universal sums of triangular numbers with one
exception 8 (see Table 13).

TABLE 13. Proper almost universal sums with one exception 8

Sums | Candidates | Conditions on ay

Aal ‘0&1 =1 ‘O{l #1

A1$a2 ‘agil ‘042751

At 1,04 [az =3 [as # 3

A1 13,04 ‘9 <ay <17 ‘044 #9,12

Aoy as,0s,00,05 | Day,as,as,0q 15 @ candidate, a5 # aL as+ 17, ...
‘IQ(AQMQQJD(I&JXAI) =0, a5 = Qg

A1 1390 9< a5 <17 as # 9,107, 117,137, 147, 157,

167,177

A11312,05 12 < as <89 as # 137,147 157, 167,177, 81

Aqy,.an(k=6)|Aq, .  an, is a candidate, ap # 0‘2717 ap_1 +17,...
To(Aay,.any) = 0, Qp = Qg1

Aqy,.an(k=6)|Aq, . an.8 s a candidate, ap # Qg1+ ¢
‘IQ(A(xl,...,(xk,l) > a0, (€= 01 1T72T73T74T7
Q-1 <o <ap-1+38 5T,6T77T’8T)

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary quadratic form f (see Table 14).
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TABLE 14. Data for the proof of the candidates when (a1, as, a3) = (1,1, 3)

Qyq Aoy aiy o, i , itions
7 ;L (5 dla||B| T ?;ﬁjse_r)ltfwndltlonb
M; M, 2 Q)
every case A3 _r
o 5 )1, m =5 (mod 8),
2z + 52)2 ;-é/> + 3z 1 m # 324+ (30 + 2)
N 6 . Ais m =0 (mod 8),

x +y + 60 1 32u+1(1
TI6 m# 3 (Bv+1)
ay =15 A5 8 0 0 m>9

N2 2 Vi r s
2z +y)” +y° +15¢ 2 ]/l 8 8 ; 7‘) m =1 (mod 8),
(2,2,15) (1,6,10) (10,0 1 m # 32+ (3v + 1)

7. Proof of Theorem 1.6

We give a proof of Theorem 1.6. For positive integers ai,...,ar (k =
1), assume that a sum A,, . o, of triangular numbers is almost universal
with one exception 2. Without loss of generality, we may assume that a; <

- < «p. From the definition of the candidate of almost universal sums of
triangular numbers with one exception, one may easily check that A; is the
unique candidate of unary almost universal sums of triangular numbers with
one exception 2. Note that T1(A1) = 2 and To(Aq) = 4. Since Ay 1 and Aq o
represent 2, there are exactly two candidates

Al’g and A1’4

of binary almost universal sums of triangular numbers with one exception 2.
Note that

5 if a1,02) = 1,3 5

SQ(AO&17Q2) = . ( ) ( )

8 if (041,042) = (1,4)

Therefore, there are exactly 8 candidates
A3z, D134, A13s, Aiaa, Dias, Aiae, Arar, and Ajyg

of ternary almost universal sums of triangular numbers with one exception 2.
If Aqyas,05 # A1,45, then the second truants of the above candidates are

5 if (a1,a0,a3) =(1,3,3),
11 if (a1, 00,a3) = (1,3,4),
7 if (aq,00,a3) =(1,3,5),
To(Aaias,as) = 20 if (a1, a2, a3) = (1,4,4),
8 if (aq,a9,a3) = (1,4,6),
9 if (aq,a9,a3) = (1,4,7),
16 if (a1,a2,a3) = (1,4,8).
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On the other hand, we checked that A; 4 5 represents all nonnegative integers
up to 107 except 2. We conjectured that the sum Aq 4,5 of triangular numbers
is almost universal with one exception 2 (see Conjecture 1.5). Note that there
are no ternary almost universal sums of triangular numbers with one exception
1,4,5, and 8 (see Theorems 1.1, 1.2, 1.3, and 1.4). Therefore, Ay 45 is the
unique candidate of ternary almost universal sums of triangular numbers with
one exception. In this section we assume that Conjecture 1.5 is true.

Continuing on with a similar escalation method in the proof of Theorem 1.1,
we find all candidates of 34 quaternary and 37 quinary proper almost universal
sums of triangular numbers with one exception 2 (see Table 15).

TABLE 15. Proper almost universal sums with one exception 2

Sums ‘ Candidates ‘ Conditions on ay,

Ag, ‘al =1 ‘al #1

Ag, [0 =34 [an #3,4

A1 3.0, 3<a3<h ay # 3,4,5

A to 4<az<8 o #4,6,7,8

Atasa, as =5 ag # 51,67,

A1,33,04 3<ay <5 oy # 3,4

A13.4,04 4<ay <11 gy # 5‘\79

A135,04 S5<ay <7 g #5

Al s, 4<as<20 ay # 51,15,18

A 46,0, 6<ou<8 s # 6

ANWR P T<a;<9 ag #7

At gy 8<as<16 oy # 14,15

Aoy as,as,0m,05 | Dai,as,as,0q 15 & candidate, as # aL as+ 17,
To(Aay,an,08,04) = 0, 05 =

A1333,05 3<as<5h as # 3,50

A133 4.0, 4<a5<29 as # 47,51, 67, 77,81, 101,

117,27

A13,4,9.05 9<a5 <11 as # 9,107,117

A1355,a5 5<as <7 as # 5,61, 77

Al 44150 15 < a5 < 35 as # 167,171,197, 207, 33

At4418,05 18 < a5 < 20 as # 18,197,201

A1,46,6,05 6<as<8 as # 6,7, 8T

A1477,05 T<as<9 as # 7,871,917

At4814,05 14 < a5 < 16 as # 14,161

A1 481505 15 < a5 <17 as # 15,161

Aoy, (b =6)Aay,.. an 2 is a candidate, ayp # CYL_UUZk—l +1f, ...
To(Aay,. 1) = 0, Qg = a1

Aoy, o (k=6)|Aay oy, is a candidate, ag # ap_1 + 4 (£ =0,17,27)
To(Da,.csan_1) # O,
p—1 <o < o1 +2
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TABLE 16. Data for the proof of the candidates when (a1, as, a3) = (1, 3,3)

J.

JU

Au” Qg s Qig

f

[n(f)

Sufficient conditions for m — f

A1z

(27 +y)% + 3y + 3z2‘ 1

m =7 (mod 8), m # 3%*(3v + 2)

TABLE 17. Data for the proof of the candidates when (a1, as, a3) = (1,3,4)

a Bayy oy Sufficient conditions for m — f
f h(f)
o $20 (mog 3) 5 Ara4 m =0 (mod 8),m # 0 (mod 3)
(4 +y)? + 3y* + 4z 1
= N
0;4 6 3 3 136 Im =2 (mod 8),m # 324(3v + 2)
(4z +y)* + 3y* + 6t 1

TABLE 18. Data for the proof of the candidates when (a1, as, a3) = (1, 3,5)
Baiy aiy iy T Sufficient conditi
f h(f) d a |B| ulcient conditions
form — f
M; M, QG
Ai3s 8§ 00
(22 + 9)2 + 332 + 52° 2 0sa| ML
- 4y 5 Y 5 2 81| 4 0—46) "= 1 (mod 8),
L 1L L £ 0 d 5
<2 4> By KD <2 8) (10,0 ‘ ™ # 0 (mod 5)

TABLE 19. Data for the proof of the candidates when (a1, as, a3) = (1,4, 4)

a4 Aa“‘“?’u” Sufficient conditions
7 W) a B
orm — f
My M,
ay # 0 (mod 3) Ay gy
(2z +4y)22+ 4y? + 422 2 alo2] 0 mf(l) (2mod (81),3
L (1,4,16) m = 0,2 (mod 3)
2 5
ay =0 (mod 3) ANPP]
(27 + y)? + 4y? + 422 2 . 0,3, 0 m= 1 (mod 8),
s 1 =0,3,5, d
(3 ?> L aae | |26 |m 0,3,5,6 (mod 7)
9
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TABLE 20. Data for the proof of the candidates when (a1, as, a3) = (1,4, 6)

Aa Qi Ol
A A Mk Sufficient conditions for m — f
f h(f)
ASIR
m =3 (mod 8), m # 0 (mod 3)
22+ 4% + 622 1

TABLE 21. Data for the proof of the candidates when (a1, ag, a3) = (1,4,7)

Qg Aazl,alz,aig . ..
T Sufficient conditions
f h(f) |d| a |IBl
form — f
My M, z ‘Q(z)
ag =38 A1,478 3 0 O
(27 +t)? + 4y + 82 2 01 -8
3 1 2
01 1 /)m>1,
+(1,0,0)] 1 |m =5 (mod 8),
4 0 2 3 =8 0)|m=1 (mod 3) or
0 40 (1,4,32) 2 3 0]/m=2,3(mod5) or
50 2,3 2
2 09 0 0 5/ |m=0 (mod 15)
+(0,0,1)| 32
15 0 0
ag =9 Argg |3 1 0
x? + 4y? + 92 2 4 -3 0)\|m =6 (mod 8),
3 4 0f|m=1 (mod 3) or
50 1,4 |2
0 0 5/|m=1,4(mod5)or
(1,4,9) {1,1,36) +(0,0,1)| 36 |m =0,10,30,35,
0, 10,30 40,50 (mod 55)
55 0
35,40, 50

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary form f (see Tables 16, 17, 18, 19, 20, 21 and

22).
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TABLE 22. Data for the proof of the candidates when (a1, as, a3) = (1,4,8)

ay Aqi) iy, ) .
7 ) d " Bl T f;ﬁ;l::(ftfcondltlons
My M, : [Q»)
ag #9,10,12 Aqas 30 0
(22 + 2)%+4y*+822 2 5 . 5 0 1 —8)
01 1 m > 1,
+(1,0,0) | 1 |m=5 (mod 8)
4 0 2 3 —8 0\ /m=1 (mod3)or
04 0 aas) |, |, 2 s 0) m=2,3 (mod 5) or
2 09 ’ 0 0 5/ jm=0 (mod15)
+(0,0,1) | 32
15 0
ay =9 A1,4,9 3 1
2?2 + 4y? + 912 2 4 =3 0\ |m=06 (mod 8),
5| 1.4 |9 3 4 0] m=1 (mod3)or
0 0 5/ |[m=1,4(mod5) or
1,4,9) (1,1,36) +(0,0,1) [ 36 |m = 0,10,30,35,
oo 0:10,30] 40,50 (mod 55)
35,40, 50
as =10 Assi0 2 -3 1
4(2y+2)*+822 +10t2 2 3 . 5 (3 0o 3 )
0 0 =-3//m=6 (mod 8),
+(1,1,—2)[ 160 [m # 0 (mod 5),
2 4 6 —2 2 6 1 12\|/m=1 (mod 3) or
{10y L (4 12) -2 6 2 7 1.2.4 |9 3 4 —8|/m=0 (mod 21) or
2 2 42 —2 2 3 )|Im=1,24 (mod7)
+(1,1,0) | 8
21 0 0
(2x+y0)f;+4;§+12t2 AI;M 3 g 36 m =1 (mod 8),
T 3 50 2,3 2 Lo 3 m # 0 (mod 3),
(2 5) 132 | A,12,16) S OLO] m=2,3 (mod 5)
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