• Title/Summary/Keyword: insulin release

Search Result 86, Processing Time 0.021 seconds

Effects of protein content and the inclusion of protein sources with different amino acid release dynamics on the nitrogen utilization of weaned piglets

  • Hu, Nianzhi;Shen, Zhiwen;Pan, Li;Qin, Guixin;Zhao, Yuan;Bao, Nan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.260-271
    • /
    • 2022
  • Objective: We aimed to investigate the effect of the differing amino acid (AA) release dynamics of two protein sources on the growth performance, nitrogen deposition, plasma biochemical parameters, and muscle synthesis and degradation of piglets when included in their diets at normal and low concentrations. Methods: Forty-eight piglets (Duroc×Landrace×Large White) with initial body weight of 7.45±0.58 kg were assigned to six groups and fed one of 6 diets. The 6 dietary treatments were arranged by 3×2 factorial with 3 protein sources and 2 dietary protein levels. They are NCAS (a normal protein content with casein), NBlend (a normal protein content with blend of casein and corn gluten meal), NCGM (a normal protein content with corn gluten meal), LCAS (a low protein content with casein), LBlend (a low protein content with blend of casein and corn gluten meal), LCGM (a low protein content with corn gluten meal). The release dynamics of AA in these diets were determined by in vitro digestion. The digestibility, utilization and biological value of nitrogen in piglets were determined by micro Kjeldahl method. Plasma insulin was measured by enzyme-linked immunosorbent assay kits. The protein expression of mediators of muscle synthesis and degradation was determined by western blotting. Results: Although the consumption of a low-protein diet supplemented with crystalline AA was associated with greater nitrogen digestion and utilization (p<0.05), the final body weight, growth performance, nitrogen deposition, and phosphorylation of ribosomal protein S6 kinase 1 and eIF4E binding protein 1 in the muscle of pigs in the low-protein diet-fed groups were lower than those of the normal-protein diet-fed groups (p<0.05) because of the absence of non-essential AA. Because of the more balanced release of AA, the casein (CAS) and Blend-fed groups showed superior growth performance, final body weight and nitrogen deposition, and lower expression of muscle ring finger 1 and muscle atrophy F-box than the CGM-fed groups (p<0.05). Conclusion: We conclude that the balanced release of AA from CAS containing diets and mixed diets could reduce muscle degradation, favor nitrogen retention, % intake and improve growth performance in pigs consuming either a normal- or low-protein diet.

Ginsenosides Protect the High Glucose-induced Stimulation of IGFs in Mesangial Cells (Mesangial 세포에서 고포도당에 의해 유도되는 insulin-like growth factor 분비 촉진작용에 대한 ginsenosides의 차단 효과)

  • Bae, Chun-Sik;Lim, Do-Seon;Yoon, Byeong-Cheol;Jeong, Moon-Jin;Yoon, Kyung-Chul;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Panax ginseng C. A. MEYER is one of the most widely used herbal medicines in the Asian countries and has diverse functions including anti-diabetic action. The dysfunctions of mesangial cells in hyperglycemic conditions are implicated in the development of diabetic nephropathy. Insulin-like growth factors (IGFs) are also associated with the onset of diabetic nephropathy. Thus, we examined the effect of ginsenosides against high glucose-induced dysfunction of primary cultured rat mesangial cells. In the present study, high glucose increased IGF-I and IGF-II secretion in mesangial cells. Ginsenoside total saponin (GTS) prevented high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. In addition, GTS prevented high glucose-induced increase of lipid peroxide formation and decrease of GSH contents. GTS also ameliorates high glucose-induced increase of arachidonic acid release and decrease of prostaglandin $E_2$. In conclusion, GTS prevented high glucose-induced dysfunction of mesangial cells via inhibition of oxidative stress and arachidonic acid pathways.

The Effect of Sleep Loss on Energy and Metabolism (호르몬수면상실이 에너지와 대사에 미치는 영향)

  • Kang, Seung-Gul
    • Sleep Medicine and Psychophysiology
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2012
  • The release of hormones and the metabolism of human body are controlled by the circadian rhythm related to sleep-wake cycle. Growth hormone, prolactin, thyroid stimulating hormone, cortisol, glucose, and insulin-secretion rates fluctuate according to the sleep-wake cycle. In addition, sleep is related to the appetite regulation and carbohydrate and other energy metabolism. Hypocretin (orexin), an excitatory neuropeptide, regulates waking and diet intake, and the poor sleep increases diet intake. The short sleep duration increases one's body mass index and impairs the function of the endocrine and metabolism, causing increases in the risk of glucose intolerance and diabetes. The poor sleep quality and sleep disorders have similar impact on the metabolic function. In short, the sleep loss and the poor quality of sleep have a detrimental effect on the endocrine and energy metabolism. The improvement of sleep quality by the future research and appropriate clinical treatment would contribute to the decrease of the metabolic diseases such as diabetes.

Preparation of Poly(hydroxypropyl methacrylate) Membraney by Sintering Method and Its Permeation Characteristics (소결공정에 의한 Poly(hydroxypropyl methacrylate) Membrane 제조와 그의 투과특성에 관한 연구)

  • Shim, Jyong-Sup;Lee, Dong-Kweon;Hong, Jae-Min
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.147-153
    • /
    • 1990
  • Poly(hydroxypropyl methacrylate) membranes and matrix devices having tertiary amine moiety were prepared by sintering method, and their permeation characteristics were investigated. The water content of this membrane was increased with decreasing the pH of the medium. The permeability of this membrane was increased with decreasing the sintering pressure. Using sintered matrix device 'burst effect' was found at the early stage, and initial insulin release of glucose oxidase immobilized matrix device could be controlled by glucose concentration of the solution.

  • PDF

Regulation of Blood Glucose Homeostasis during Prolonged Exercise

  • Suh, Sang-Hoon;Paik, Il-Young;Jacobs, Kevin A.
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.272-279
    • /
    • 2007
  • The maintenance of normal blood glucose levels at rest and during exercise is critical. The maintenance of blood glucose homeostasis depends on the coordination and integration of several physiological systems, including the sympathetic nervous system and the endocrine system. During prolonged exercise increased demand for glucose by contracting muscle causes to increase glucose uptake to working skeletal muscle. Increase in glucose uptake by working skeletal muscle during prolonged exercise is due to an increase in the translocation of insulin and contraction sensitive glucose transporter-4 (GLUT4) proteins to the plasma membrane. However, normal blood glucose level can be maintained by the augmentation of glucose production and release through the stimulation of liver glycogen breakdown, and the stimulation of the synthesis of glucose from other substances, and by the mobilization of other fuels that may serve as alternatives. Both feedback and feedforward mechanisms allow glycemia to be controlled during exercise. This review focuses on factors that control blood glucose homeostasis during prolonged exercise.

Secretagogin deficiency causes abnormal extracellular trap formation in microglia

  • Yu Gyung Kim;Do-Yeon Kim
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.34-41
    • /
    • 2024
  • Extracellular traps (ETs), primarily composed of DNA and antibacterial peptides, are mainly secreted by neutrophils to inhibit pathogen spread and eliminate microorganisms. Recent reports suggest that microglia can also secrete ETs, and these microglial ETs are associated with various neurological conditions, including nerve injury, tumor microenvironment, and ischemic stroke. However, the components and functions of microglial ETs remain underexplored. Secretagogin (Scgn), a calcium-sensor protein, plays a crucial role in the release of peptide hormones, such as insulin, in endocrine cells; however, its function in immune cells, including microglia, is not well understood. Our study demonstrated that Scgn deficiency can lead to the formation of abnormal ETs. We hypothesized that this may involve the c-Jun N-terminal kinase-myeloperoxidase pathway and autophagy.

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

Hypoglycemic Effect of Cordyceps militaris (큰번데기동충하초(Cordyceps militaris)의 혈당강하효과)

  • Kwon, Young-Min;Cho, Su-Min;Kim, Jee-Hun;Lee, Jae-Hee;Lee, Yeon-Ah;Lee, Seung-Jung;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.4 s.127
    • /
    • pp.327-329
    • /
    • 2001
  • Cordyceps militaris (CM) has been used as a tonics in the traditional medicine. To investigate the anti-diabetic principle of CM, activity guided fractionation was conducted. Hot water extract of CM was fractionated into 3 parts: above 100,000(A), $100,000{\sim}20,000(B)$, below 20,000(C) in molecular weight using in membrane filter system. All fractions showed mild hypoglycemic activity in streptozotocin (STZ)-induced diabetic rats by oral administration (300 mg/kg). The fraction C which was most active among them was fractionated again into two parts, C-1 and C-2 by Sephadex LH 20 column chromatography. The fraction C-1 showed hypoglycemic activity but C-2 did not show activity compared with control in STZ mice. In glucose-fed hyperglycemic mice, fraction C, C-1 and C-2 also showed significant glucose lowering activity. Their decreasing rates of plasma glucose level after 1 hours administrations of fraction C, C-1 and C-2 were 24.5%, 29.3% and 22.0%, respectively (Tolbutamide: 48.4%). These results suggested that CM has both insulin like and insulin release promoting activity and could be developed as an antidiabetic agent.

  • PDF

An Herbal Medicine Mixture (HM-10) Induces Longitudinal Bone Growth and Growth Hormone Release in Rats

  • Park, Sung-Sun;Oh, Sung-Hoon;Bae, Song-Hwan;Kim, Jung-Min;Chang, Un-Jae;Park, Jung-Min;Kim, Jin-Man;Suh, Hyung-Joo
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1046-1050
    • /
    • 2007
  • To investigate the growth promoting effects of an herbal medicine formulation (HM-10), Sprague Dawley (SD) male rats (3 weeks old) were divided into 3 groups (8 rats/group). The control group was given a daily oral administration of saline, and the treatment groups, HM-1 and HM-2, were given daily administrations of HM-10 (500 and 1,000 mg/kg BW, respectively). The cumulative tibial bone growth of the HM-1 and HM-2 groups (22.5 and 20.8 mm, respectively), and their cumulative femur bone growth (19.4 and 18.2 mm, respectively), were significantly different compared to the control group (7.5 mm of tibial growth and 7.7 mm of femur growth) (p<0.05). Lastly, the growth hormone levels of the HM-1 and HM-2 groups (1.70 and 1.79 ng/mL, respectively), as well as their insulin like growth factor 1 (IGF-1) levels (165.1 and 171.7 ng/mL, respectively) showed significant differences compared to the control (0.93 ng/mL of growth hormone and 125.6 ng/mL of IGF-1) (p<0.05).

Roles of Non-cholinergic Intrapancreatic Nerves, Serotonergic Nerves, on Pancreatic Exocrine Secretion in the Isolated Perfused Rat Pancreas

  • Jiang, Zheng Er;Shin, Bich-Na;Kim, In-Hye;Lee, Hyun-Joo;Yong, Jun-Hwan;Lee, Min-Jae;Won, Moo-Ho;Lee, Yun-Lyul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.307-312
    • /
    • 2011
  • It has been rereported that axons which display 5-hydroxytryptamine (5-HT) immunoreactivity are abundant in the pancreas and the majority of serotonergic axons terminate within intrapancreatic ganglia, islet and acini. This histological result strongly suggests that intrapancreatic serotonergic nerves could affect to the pancreatic endocrine and exocrine secretion. Thus, this study was aimed to investigate whether intrapancreatic serotonergic nerves could affect pancreatic exocrine secretion and an action mechanism of the intrapancreatic serotonergic nerves. The rats were anesthetized with a single injection of urethane. The median line and the abdominal aorta was carefully dissected and cannulated with PE-50 tubing just above the celiac artery, and then tightly ligated just below the superior mesenteric artery. The pancreatic duct was also cannulated with Tygon microbore tubing. With the addition of serotonin, pancreatic volume flow and amylase output were significantly inhibited electrical field stimulation (EFS). On the other hand, pancreatic volume flow and amylase output were significantly elevated in EFS with the addition of spiperone. EFS application, however, pancreatic volume flow and amylase output had no significant change in cholecystokinin (CCK) alone when serotonin was applied under a 5.6 mM glucose background. Pancreatic volume flow and amylase output under 18 mM glucose background were significantly elevated in CCK plus serotonin than in CCK alone. These data suggest that intrapancreatic serotonergic nerves play an inhibitory role in pancreatic exocrine secretion and an important role in the insulin action or release.