• Title/Summary/Keyword: insulation system

Search Result 1,387, Processing Time 0.027 seconds

An Experimental Study of the Dried and Unified Execution Technology for the Sub-Organization of the Green Roofs System using the Panel of Block Type (블록형 패널을 이용한 옥상녹화 하부시스템의 건식화 $\cdot$ 일체화 시공기술에 대한 실험적 연구)

  • Moon, You-Seok;Jang, Sang-Muk;Hong, chae-ho;Cha, Yun-Jung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.119-123
    • /
    • 2007
  • Recently, the green roofs market is active, but most constructors use former waterproofing method. So there are a lot of problems in the sub-organization of the green roofs system. I studied to use the block panel for the sub-organization of the green roofs system and I tested about the effectiveness of waterproofing, root barrier, drainage, and insulation. I have not found any problems about waterproofing, root barrier, drainage, and insulation in the results. The sub-organization of the green roofs system using the block panel is effective for waterproofing, root barrier, drainage, and insulation. We can apply it to the dried and unified execution technology.

  • PDF

Dielectric Strength of Macro Interface between Epoxy and Rubber According to the Interface Condition (계면조건에 따른 에폭시와 고무 거시계면의 절연내력)

  • Oh, Yong-Cheul;Bae, Duck-Kweon;Kim, Jin-Sa;Kim, Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.581-585
    • /
    • 2006
  • Macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably in the complex insulation system using in extra high voltage (EHV) electric devices. In this paper, Interface between epoxy and ethylene propylene diene terpolymer (EPDM) was selected as an interface in electrical insulation system and the AC dielectric strength of the interface was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

Failure Case-Study and Countermeasures of High-Voltage Motor with Inverter Drive System (인버터 구동에 따른 고압전동기 사고사례와 대책)

  • Choi Young-Chan;Woo Myung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • Recently, the insulation breakdown accident has been experienced at 6.6kV inverter driving motor. That brought about the reliability degradation of motor driving system.. We need to find the solution with system engineering level. The objectives of this study are developing the appropriate filter for the drive to protect the motor and the Insulation system of motor which Is driven by inverter. We clarify the cause of the deterioration of the inverter driving motor through the analysis of Insulation breakdown accidents.

  • PDF

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation (다공성 단열재를 포함한 열방어구조의 열 특성 분석)

  • Hwang, Kyungmin;Kim, Yongha;Lee, Jungjin;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.26-34
    • /
    • 2016
  • In a number of industries, porous insulations have been frequently used, reducing thermal insulation space through excellent performance of the thermal insulation's characteristics. This paper suggests an effective thermal conductivity prediction model. Firstly, we perform a literature review of traditional effective thermal conductivity prediction models and compare each model with experimental heat transfer results. Furthermore, this research defines the effectiveness of thermal conductivity prediction models using experimental heat transfer results and the Zehner-Schlunder model. The newly defined effective thermal conductivity prediction model has been verified to better predict performance than other models. Finally, this research performs a transient heat transfer analysis of a thermal protection system with a porous insulation in a high speed vehicle using the finite element method and confirms the validity of the effective thermal conductivity prediction model.

A Life Prediction of Insulation Degradation Using Complex Sensing System (복합 감지 시스템을 이용한 부분방전의 절연열화 수명추정)

  • Kim, S.H.;Kim, J.H.;Park, J.J.;Choi, J.K.;Yoon, H.J.;Lee, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.348-350
    • /
    • 1997
  • Because of internal voids ininsulators give rise to partial discharge(PD), which cause local breakdown and even entire insulation breakdown. Treeing due to PD is one of the main causes of breakdown of the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation has become important. From this viewpoint, our studies diagnose insulation degradation using the method of computer sensing system, which has the advantages of PD and acoustic emission(AE) sensing system. To use advantages of these two methods can be used effectively to search for treeing location and PD in some materials. In analysis method of degradation. We analyzed the PD pulse and AE pulses by regression analysis, compared to these obtained the correlation coefficient and determination coefficient by T-distribution and saw that PD and AE pulses show a similar pattern on the whole. Finally using statically operator such as the center of gravity(G), the gradient of the discharge distribution(C), we have analyzed for the prediction of life which we can be obtained the time, occurred of many pulse of small discharge amplitude.

  • PDF

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

Optimal Design of an Antenna for the Detection of Partial Discharges in Insulation Oil (절연유중 부분방전 검출을 위한 안테나의 최적 설계)

  • Lee, Jung-Yoon;Jo, Hyang-Eun;Park, Dae-Won;Kil, Gyung-Suk;Oh, Jae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.309-314
    • /
    • 2013
  • This paper dealt with the radiated electromagnetic wave detection of partial discharge (PD) in oil for insulation diagnostics of oil-immersed transformers. Three types of electrode system were fabricated to simulate the insulation defects that could occur in oil-immersed transformers. Frequency components of radiated electromagnetic wave in oil was measured by broadband bi-conical antennas of 300 MHz~2 GHz and a spectrum analyzer of 9 kHz~3 GHz. Frequency component of electromagnetic waves from PD in oil were highly distributed at 500 MHz. From the result, a narrow-band monopole antenna with the center frequency of 500 MHz was fabricated. We could detect PD signal in insulation oil without an influence of external noise by a measurement system which consists of the prototype monopole antenna, a LNA (Low Noise Amplifier), an oscilloscope and a spectrum analyzer.

Control Strategy Based on Equivalent Fundamental and Odd Harmonic Resonators for Single-Phase DVRs

  • Teng, Guofei;Xiao, Guochun;Hu, Leilei;Lu, Yong;Kafle, Yuba Raj
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.654-663
    • /
    • 2012
  • In this paper, a digital control strategy based on equivalent fundamental and odd harmonic resonators is proposed for single-phase DVRs. By using a delay block, which can be equivalent to a bank of resonators, it rejects the fundamental and odd harmonic disturbances effectively. The structure of the single closed-loop control system consists of a delay block, a proportional gain and a set of zero phase notch filters. The principle of the controller design is discussed in detail to ensure the stability of the system. Both the supply voltage and the load current feedforwards are used to improve the response speed and the ability to eliminate disturbances. The proposed controller is simple in terms of its structure and implementation. It has good performances in harmonic compensation and dynamic response. Experimental results from a 2kW DVR prototype confirm the validity of the design procedure and the effectiveness of the control strategy.

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle in Post Crash (수소연료전지자동차의 충돌시 절연성능 평가방법에 관한 고찰)

  • Lee, Kiyeon;Gil, Hyoungjun;Kim, Dongook;Kim, Dongwoo;Kang, Daechul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.612-618
    • /
    • 2012
  • In this paper, in order to prevent electric shock of high voltage system of HFCV after crash test, insulation performance measurement methods were studied. Under conditions of in-use, insulation performance tests can be divided into measurement method using the vehicle's own RESS as DC voltage source and measurement method using DC voltage from off-vehicle sources. However, these tests can not be applied after a post-crash because parts of high voltage system cover should be removed, and insulation performance can be influenced during these tests. Therefore, we proposed post-crash insulation performance test methods for preventing electric shock through problem analysis of previous post-crash insulation performance tests. Also, test equipment which can measure voltage absence and total energy was developed. We verified performance of the equipment through experiments with vehicle test.