• Title/Summary/Keyword: insulating performance

Search Result 241, Processing Time 0.028 seconds

Review of New Technologies' Energy Conservation Rate in High-Performance Buildings (High-Performance Buildings 구현을 위한 신기술 연구 동향 및 에너지 절감 효과 평가)

  • Kim, Chul-Ho;Yang, Ja-Kang;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the energy performance by applying new technologies for passive and active control. Method: We selected new technologies for passive and active control which are based on formal study by analyzing technology applied to the High-Performance Buildings in various countries. Also, we analyzed energy saving potential for each technologies by breakdown the result of the energy saving rates in detail. Result: For the wall and roof insulating methods, preceding studies showed that up to 21% energy could be saved by improving roof insulation and applying proper outside insulation compared to non-insulation. For the windows and glazing system, preceding studies showed that Low-E glazing system could save up to 11% energy compared to single glazing system. Studies about solar and daylighting controls revealed that effective daylighting dimming control could save 13% of energy compared to uncontrolled situation. Studies on DOAS (Dedicated Outdoor Air System) showed that about 23% energy could be saved compared to standard VAV system. Studies on the active chilled beam showed that about 25% energy could be saved compared to standard VAV system and studies of applying UFAD (Under Floor Air Distribution) could consume 31% less energy than applying overhead system.

Size Effect of Hollow Silica Nanoparticles as Paint Additives for Thermal Insulation (단열 페인트 첨가제로써 중공형 실리카 나노입자의 크기에 따른 효과)

  • Kim, Jisue;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Using air as an insulator due to its low heat transfer coefficient has been studied and has been widely commercialized to save energy in the field of thermal insulation technology. In this study, we analyzed the heat insulating effect of hollow silica nanoparticles mixed in non-uniform size, and the maximum heat insulating efficiency of these particles given the limited number of particles that can be mixed with a medium such as paint. The hollow silica nanoparticles were synthesized via a sol-gel process using a polystyrene template in order to produce an air layer inside of the particles. After synthesis, the particles were analyzed for their insulation effect according to the size of the air layer by adding 5 wt % of the particles to paint and investigating the thermal insulation performance by a heat transfer experiment. When mixing the particles with white paint, the insulation efficiency was 15% or higher. Furthermore, the large particles, which had a large internal air layer, showed a 5% higher insulation performance than the small particles. By observing the difference in the insulation effect according to the internal air layer size of hollow silica nanoparticles, this research suggests that when using hollow particles as a paint additive, the particle size needs to be considered in order to maximize the air layer in the paint.

Evaluation of the Applicability of Azon and Azo-Core for Enhancing Airtightness and Thermal Insulation Performance of Insulated Shutters (단열 셔터의 기밀성능 및 단열성능 확보를 위한 Azon 및 Azo-Core의 적용성 평가)

  • Kil, Min-Woo;Kim, Gyu-Yong;Choi, Byung-Cheol;Ji, Sung-Jun;Youn, Hye-Young;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.437-445
    • /
    • 2024
  • This study investigated the thermal insulation performance of Azon and Azo-Core, two materials commonly used in window frames, for potential application in window shutters. A three-pronged evaluation approach was employed, utilizing the Therm 7.4 software, confidential test results, and dedicated thermal insulation testing. The simulation data indicated that both Azon and Azo-Core offered superior insulating properties compared to conventional shutter insulation materials. When incorporated into shutters, these materials achieved a first-grade sealing performance and a measured average thermal conductivity of 2.018W/m2·K. While this thermal conductivity value surpasses the standard requirements of 1.5W/m2·K for central regions and 1.8W/m2·K for southern regions in Korea, it falls within the acceptable limit of 2.2W/m2·K established for the Jeju region. Based on these findings, Azo-Core, warranting further dedicated research, presents itself as a promising candidate for shutter insulation material, particularly in applications targeting the Jeju region.

Development of Aircap Wall Module through the Lamination of Aircap (에어캡 적층을 통한 에어캡 벽 모듈 개발)

  • Kim, Kyung Soo;Seo, Jang Hoo;Kim, Yong Seong;Lee, Haeng Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.504-514
    • /
    • 2017
  • The insulation performance of aircaps has been recognized and various studies regarding the aircap as a solution to increased building energy consumption are being carried out. However, the aircap is not durable and therefore it cannot play the role of an independent finishing material. Accordingly, the purpose of this study is to suggest an aircap wall module with improved durability through the lamination of the aircap and verify its effectiveness by evaluating its energy saving performance for lighting and air conditioning through a full-scale testbed. The conclusions of this study are as follows. 1) The aircap wall module featuring a laminated aircap that is being proposed in this study can save lighting energy due to the permeability of the aircap in comparison to previous insulating materials. 2) The aircap wall module with a laminated aircap is effective in improving heating and air-conditioning energy saving when it is more than 15 cm-thick during summer and winter in comparison to a 5 cm-thick prefabricated panel. 3) The aircap wall module featuring a laminated aircap is effective in improving lighting and heating and air-conditioning energy saving when it is 10 cm- and 5 cm-thick during summer and winter, respectively, in comparison to a 5 cm-thick prefabricated panel.

Research Activities of Transpiration Cooling for High-Performance Flight Engines (고성능 비행체 엔진을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.966-978
    • /
    • 2011
  • Transpiration cooling is the most effective cooling technique for the high-performance liquid rockets and air-breathing engines operating in aggressive environments with higher pressures and temperatures. When applying transpiration cooling, combustor liners and turbine blades/vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. Practical implementation of the cooling technique has been hampered by the limitations of available porous materials. But advances in metal-joining techniques have led to the development of multi-laminate porous structures such as Lamilloy$^{(R)}$ fabricated from several diffusion-bonded, etched metal thin sheets. And also with the availability of lightweight, ceramic matrix composites(CMC), transpiration cooling now seems to be a promising technique for high-performance engine cooling. This paper reviews recent research activities of transpiration cooling and its applications to gas turbines, liquid rockets, and the engines for hypersonic vehicles.

Enhancement of Thermal Insulation Performance with Phase Change Material for Thermal Batteries (상변화 물질을 이용한 열전지 단열성능 향상에 관한 연구)

  • Lee, Jaein;Ha, Sang-hyeon;Kim, Kiyoul;Cheong, Haewon;Cho, Sungbaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2016
  • Thermal batteries are primary reserve power sources, which are activated upon the melting of eutectic electrolytes by the ignition of heat sources. Therefore, sufficient thermal insulation is absolutely needed for the stable operation of thermal batteries. Currently, excessive amount of heat sources is being used to compensate the heat loss in the cell stack along with the insertion of metal plates and thermal insulators to reserve heat at the both ends of cell stack. However, there is a possibility that the excessive heat flows into the cell stack, causing a thermal runaway at the early stage of discharge. At the same time, the internal temperature of thermal batteries cannot be maintained above the battery operating temperature at the later stage of discharge because of the insufficient insulation. Therefore, the effects of Phase Changing Material(PCM) plates were demonstrated in this study, which can replace the metal and insulating plates, to improve the thermal insulation performance and safety of thermal batteries.

Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks (대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석)

  • KIM, KYEONGHO;SHIN, DONGHWAN;KIM, YONGCHAN;KARNG, SARNG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

Characteristics of Insertion Loss of Adhesive Tapes to Reduce Noise through Small Opening Hole (미세한 공혈을 통한 소음의 저감을 위한 접착 테이프 별 삽입손실 특성)

  • Yong Thung Cho
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.232-237
    • /
    • 2024
  • Adhesive tapes can be conveniently used for various applications by combination of materials requiring diverse mechanical strength and specific adhesives. Duct tape is usually readily available and one of the most widely used adhesive tapes. Duct tapes are composite materials with good mechanical strength consisted of fiber material, which is different from other tapes. In addition, electrical insulation tapes are used for very long period of time for insulating cables, and are also used for reinforcement of mechanical strength and increasing damping of cable in practice. Recently, variety of foam tapes and double-sided tapes are widely used in diverse applications. However, there is no previous work readily available clearly illustrating noise isolation performance of tapes. In present work, noise isolation performance of tapes is presented by measurement of insertion loss of variety of tapes on a small hole. Double-side foam tapes presented the best noise isolation performance among adhesive tapes measured in present work.

Analysis on the Fire Accident of Vehicle Due to Damage of the Vehicle's Electrical Components (차량 전장부품 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.32-38
    • /
    • 2015
  • In this paper, we analyzed the vehicle fire accidents due to damage of vehicle's electrical components, which is applied to a vehicle. In recent development of electrical components technology, approximately 40% of vehicle manufacturing parts have applied electronic circuit technology. Phenomenon such deterioration of insulating performance or electric breakdown on the vehicle's electrical components and printed circuit boards(PCBs) resulted from moisture, contamination and aging due to repetitive operations, lead to the vehicle fire. Therefore, the application of electrical components with adequate electric capacity for vehicle and usage of molding techniques using a non-combustible materials to shut off the oxygen should be applied in order to prevent vehicle fire due to damage of the electrical components and PCBs.

Study of Discharge in Point-Plane Air Interval Using Fuzzy Logic

  • Bourek, Yacine;Mokhnache, Leila;Nait Said, Nacereddine;Kattan, Rafik
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • The objective of this paper is to study the discharge phenomenon for a point-plane air interval using an original fuzzy logic system. Firstly, a physical model based on streamer theory with consideration of the space charge fields due to electrons and positive ions is proposed. To test this model we have calculated the breakdown threshold voltage for a point-plane air interval. The same model is used to determine the discharge steps for different configurations as an inference data base. Secondly, using results obtained by the numerical simulation of the previous model, we have introduced the fuzzy logic technique to predict the breakdown threshold voltage of the same configurations used in the numerical model and make estimation on the insulating state of the air interval. From the comparison of obtained results, we can conclude that they are in accordance with the experimental ones obtained for breakdown discharges in different point-plane air gaps collected from the literature. The proposed study using fuzzy logic technique shows a good performance in the analysis of different discharge steps of the air interval.