DOI QR코드

DOI QR Code

Research Activities of Transpiration Cooling for High-Performance Flight Engines

고성능 비행체 엔진을 위한 분출냉각의 연구동향

  • 황기영 (국방과학연구소 1본부 5부) ;
  • 김유일 (국방과학연구소 1본부 5부)
  • Received : 2011.07.01
  • Accepted : 2011.09.22
  • Published : 2011.10.01

Abstract

Transpiration cooling is the most effective cooling technique for the high-performance liquid rockets and air-breathing engines operating in aggressive environments with higher pressures and temperatures. When applying transpiration cooling, combustor liners and turbine blades/vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. Practical implementation of the cooling technique has been hampered by the limitations of available porous materials. But advances in metal-joining techniques have led to the development of multi-laminate porous structures such as Lamilloy$^{(R)}$ fabricated from several diffusion-bonded, etched metal thin sheets. And also with the availability of lightweight, ceramic matrix composites(CMC), transpiration cooling now seems to be a promising technique for high-performance engine cooling. This paper reviews recent research activities of transpiration cooling and its applications to gas turbines, liquid rockets, and the engines for hypersonic vehicles.

분출냉각은 높은 압력과 온도의 가혹한 환경에서 운용되는 고성능 액체로켓과 공기흡입엔진을 위한 가장 효과적인 냉각방법이다. 분출냉각이 적용되는 경우, 연소기 라이너와 터빈 블레이드/베인은 다공질 벽면을 통과하는 냉각재(공기 또는 연료)뿐만 아니라 차단막으로 작용하는 벽면을 빠져나온 냉각재에 의해 냉각된다. 이러한 냉각기술의 실용화는 가용한 다공질 재료의 부재로 인해 제한을 받아왔다. 그러나 금속결합 기술의 발전으로 확산접합과 식각된 얇은 금속판으로 제작한 Lamilloy$^{(R)}$와 같은 다층 기공 구조물이 개발되었다. 그리고 또한 경량 세라믹 매트릭스 복합재료가 개발됨에 따라 분출냉각은 근래 고성능 엔진 냉각을 위한 유망 기술로 여겨지고 있다. 본 논문에서는 분출냉각의 최근 연구동향 및 가스터빈, 액체로켓 및 극초음속 비행체 엔진에 이의 적용사례를 고찰하였다.

Keywords

References

  1. Suslov, D. I., Arnold, R., and Haidn, O. J., "Convective and Film Cooled Nozzle Extension for a High Pressure Rocket Subscale Combustion Chamber," AIAA-2010-1150, 2010.
  2. Han, J. C., Dutta, S., and Ekkad, S., Gas Turbine Heat Transfer and Cooling Technology, Taylor & Francis, 1999, pp.1-25.
  3. http://mpt-llc.com/Patents/tubineairfoil.pdf, "Advances in Turbine Airfoil Cooling Designs Enabled by Improvements in Core Manufacture & Casting Capability".
  4. Cerri, G., Giovannelli, A., Battisti L., and Fedrizzi, R., "Advances in Effusive Cooling Techniques of Gas Turbines," Applied Thermal Engineering, Vol.27, 2007, pp.692-698. https://doi.org/10.1016/j.applthermaleng.2006.10.012
  5. Nealy, Davis A., "Combustor Cooling - Old Problems and New Approaches," in Gas Turbine Combustor Design Problems, by Lefebvre, A. H., Hemisphere Publishing Corp., 1980, pp.151-185.
  6. Brown, S. F. "21st Century Hot Jet Engines," Popular Science, Vol.236, No.6, 1990, pp.83-89.
  7. Lefebvre, A. H., Gas Turbine Combustion, 2nd Ed., Taylor & Francis, 1999, pp.275-310.
  8. Wadia, A. R., "Advanced Combustor Liner Cooling Technology for Gas Turbine," Defense Science Journal, Vol.38, No.4, 1988, pp.363-380. https://doi.org/10.14429/dsj.38.5870
  9. Allison Engine Company and General Motors Corporation, (Latest Owner: Rolls-Royce Corporation, Indianapolis, IN 46241), Sheet Metal (Lamilloy), Registration No. 0889623, 1970.
  10. http://www.domain-b.com/aero/mil_avi/ miss_muni/20090112_supersonic_cruise_missile.h tml, Aviation & Aerospace News, "Rolls-Royce Completes Initial Test of Engine for Supersonic Cruise Missile Programme (2009.1.12)".
  11. http://www.euroairport.com
  12. Clifford, R. J., "Rotating Heat Transfer Investigations on a Multipass Cooling Geometry," AGARD-CP-390, 1985.
  13. 吉田豊明: 冷却技術, 日本ガスタービン学会誌, 25-97, 1997, pp.29-34.
  14. Younossi, O., Arena, M. V., Moore, R. M., Lorell, M., Mason, J., and Graser, J. C., "Military Jet Engine Acquisition : Technology Basics and Cost-Estimating Methodology," RAND, MR-1596-AF, 2002.
  15. 129Langston, L. S., "Fahrenheit 3600, Everywhere You Look, the Great Turbine Industry is Running Hot," Mechanical Engineering (The Magazine of ASME), Vol.129, No.4, 2007, pp.34-37.
  16. Ruffles, P. C., "Aero Engines of the Future," The Aeronautical Journal, 2003, pp.307- 321.
  17. Wear, J. D., Trout, A. M., Smith, J. M., and Jones, R. E., "Design and Preliminary Results of a Semi-Transpiration Cooled (Lamilloy) Liner for a High-Pressure, High- Temperature Combustor," AIAA-78-997, 1978.
  18. Wear, J. D., Trout, A. M. and Smith, J. M., "Performance of Semi-Transpiration-Cooled Liner in High-Temperature-Rise Combustor," NASA-TP-1806, 1981.
  19. Essman, D. J., Vogel, R. E., Tomlinson, J. G., and Novick, A. S., "TF41/Lamilloy Accelerated Mission Test," AIAA-81-1349, 1981.
  20. Auyeung, T. P., Cohn, R., Coy, E., Danczyk, S. A., Papesh, C., and Sweeney, P., "Experimental and Numerical Analysis of Transpiration Cooling of a Rocket Engine Using Lamilloy${\circledR}$ Plates (POSTPRINT)," AFRLPR- ED-TP-2005-450 (ADA 445014), 2005.
  21. Serbest, E., Haidn, O., Hald, H., Korger, G., and Winkelmann, P., "Effusion Cooling in Rocket Combustors Applying Fiber Reinforced ceramics," AIAA-99-2911, 1999.
  22. Greuel, D., Herbertz, A., Haidn, O. J., Ortelt, M., and Hald, H., "Transpiration Cooling Applied to C/C Liners of Cryogenic Liquid Rocket Engines," AIAA-2004-3682, 2004.
  23. Hald, H., Ortelt, M., Fischer, I., Greuel, D., and Haidn, O. J., "Effusion Cooled CMC Rocket Combustion Chamber," AIAA-2005-3229, 2005.
  24. Steel, S., "Ceramic Materials for Reusable Liquid Fueled Rocket Engine Combustion Devices," The AMPTIAC Quarterly, Vol.8, No.1, 2004. pp.39-43.
  25. Sozen, M. and Davis, P. A., "Transpiration Cooling of a Liquid Rocket Thrust Chamber Wall, AIAA-2008-4559, 2008.
  26. Kelly, H. N. and Blosser, M. L., "Active Cooling from the Sixties to NASP," NASA-TM -109079 (N93-12458), 1994.
  27. Glass, D. E., "Ceramic Matric Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles," AIAA- 2008-2682, 2008.
  28. 김중연, 박선희, 전병희, 김성현, 정병훈, 한정식, "흡열연료를 이용한 고속비행체 냉각기술 동향," 한국추진공학회지, 제14권, 제2호, 2010, pp.71-79.
  29. Bouchez, M., Dufour E., and Daniau, E., "Semi-Empirical and CFD Analysis of Actively Cooled Dual-Mode Ramjets: 2006 Status," AIAA -2006-9073, 2006.
  30. Huang, H., Sobel, D. R., and Spadaccini, L. J., "Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling," AIAA-2002-3871, 2002.
  31. Song, K. D., Choi, S. H., and Scotti, S. J., "Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes", Journal of propulsion and Power, Vol.22, No.1, 2006, pp.96-102. https://doi.org/10.2514/1.11300
  32. Gascoin, N., Gillard, P., Dufour, E., and Touré, Y., "Validation of Transient Cooling Modeling for Hypersonic Application, Journal of Thermophysics and Heat Transfer, Vol.21, No.1, 2007, pp.86-94. https://doi.org/10.2514/1.26022
  33. T. Langener, J. V. Wolfersdorf, M. Kuhn, and J. Steelant, "Transpiration Cooling with Supersonic Flows and Foreign Gas Injection," AIAA-2010-6794, 2010.
  34. Bennelt, A. I. and McPherson, D. J., "Materials for Large Land-Based Gas Turbines," NMAB-430, 1986,
  35. 김영길, 홍순형, 백경욱 "초내열 ODS MA 합금 설계 및 응용(제3차년도 최종보고서)," 과학기술처, 1995.
  36. Nealy, D. A. and Reider, S.B., "Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling," ASME Paper 79-GT -100, 1979.
  37. http://www.ultramet.com/propulsionsystem_components_liquid_rocket,html.
  38. 우상국, 한인섭, "에너지용 다공질 소재의 동향 및 전망," 세라미스트, 제10권, 제6호, 2007, pp.22-30.
  39. 엄정해, 채수호, 김영욱, "반응소결에 의한 다공질 세라믹스의 제조공정," 세라미스트, 제10 권, 제6호, 2007, pp.14-21.
  40. 전의진, 이우일, 윤광준, 김태욱, "최신 복합재료," (주)교학사, 1995.
  41. Bouchez, M. and Beyer, S., "PTAHSOCAR Fuel-Cooled Composite Materials Structure," AIAA-2008-2626, 2008.
  42. Serbest, E., Haidn, O. J., Greuel, D., Hald, H., and Korger, G., "Effusion Cooling of Throat Region in Rocket Engines Applying Fiber Reinforced Ceramics," AIAA-2001-3410, 2001.
  43. Ortelt, M., Herbertz, A., and Hald, H., "Investigation on Fiber Reinforced Combustion Chamber Structures under Effusion Cooled LOX/LH2 Operation," AIAA-2009-5475, 2009.
  44. 김광수, "첨단 탄소 복합재료의 개발 및 응용에 관한 고찰," 요업기술, 제12권, 제2호, 1997, pp.91-100.
  45. 김옥희, 이승윤, 윤병일, 박종욱, "다층코팅을 이용한 C/C 복합재료의 내산화성 및 내마모성 증진," 한국세라믹학회지, 제32권, 제9호, 1995, pp.1003-1008.

Cited by

  1. Design and Analysis of Test Facility for the Experiment of Transpiration Cooling in Hot-flow Condition vol.17, pp.2, 2013, https://doi.org/10.6108/KSPE.2013.17.2.046