• Title/Summary/Keyword: instantaneous release

Search Result 26, Processing Time 0.017 seconds

Estimation of Chemical Flame Height based on Fuel Consumption in a Fire Field Model (필드모델에서 연료소모에 기초한 화학적 화염높이 산정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • The present study has been conducted to estimate the chemical flame height based on fuel consumption in fire field model. The calculation algorithms based on cumulative fraction of HRRPUL and fuel concentration along the z axis were applied to the results predicted by Fire Dynamics Simulator (FDS) version 6.3.2 and the mean chemical flame height was obtained by time averaging of instantaneous flame height with the algorithms. The mean flame height calculated by fuel concentration was quite well matched with that of cumulative value of HRRPUL within 10% over-prediction. This study contribute to a more detailed understanding of fire behavior and quantitative evaluation of flame height in the computational fire model.

The Effect of Water Compressibility on a Rigid Body Movement in a Water-filled Duct Driven by Compressed Air (압축공기로 움직이는 관 내부 수중 이동물체의 거동에 미치는 물의 압축성 영향)

  • Park, Chan-Wook;Lee, Sung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • The motion of a projectile initiated by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on projectile movements are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles.

Numerical Simulation for Dispersion of Anthropogenic Pollutant in Northern Masan Bay using Particle Tracking Model (입자추적모델을 이용한 마산만 북부 해역에서의 육상오염물질 확산 수치모의)

  • KIM, Jin-Ho;JUNG, Woo-Sung;HONG, Sok-Jin;LEE, Won-Chan;CHUNG, Yong-Hyun;KIM, Dong-Myung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1143-1151
    • /
    • 2016
  • To study the dispersion process and residence time of anthropogenic pollutant in Masan bay, a three-dimensional hydrodynamic model coupled to a particle tracking model, EFDC, is applied. Particle tracking model simulated the instantaneous release of particles emulating discharge from river and wastewater treatment plant to show the behaviour of pollutant in terms of water circulation and water exchange. Modelled outcomes for water circulation were in good agreement with tidal elevation and current data. The results of particle tracking model show that over half of particles released from northern Masan bay transport to out of area while the particles from Dukdong wastewater treatment plant transport to northern area. This meant pollution source from inside and outside of the northern area can affect water quality of northern Masan bay.

The Eire Risk Assessment in Compressed Natural Gas Buses & Gas Station (CNG 버스 및 충전소의 화재 위험도 평가)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.57-67
    • /
    • 2004
  • The results of the risk assessing on general buses, consisting mainly of diesel-fueled buses, show that the frequency of the instantaneous release is 1.4${\times}$10$^{-3}$ /bus/year, from which the probability of the formation of fireball as a sub event becomes 1.7${\times}$104, and show that the leakage from the CNG-fueled buses is 0.002 event/year. Also, the frequency of gradual release due to a crack is estimated at 3.7${\times}$10$^{-3}$ /buses/year, and a subsequent probability at which this could lead to a jet flame as a sub event is 1.2${\times}$10$^{-3}$ This corresponds to 0.04event/year for the CNG-fueled buses. Dividing all the fired casualties by the running distance of diesel-fueled buses, the risk is 0.091 fire fatalities per 100-million miles. And the total fire risk fur CNG buses is approximately 0.17 per 100-million miles of travel. This means that CNG buses is twice or more dangerous than diesel buses. After all CNG buses are more susceptible to the major fires. In the aspect of the reliability of this study, generic models and the failure data used in assessing the risks of CNG buses are appropriate. However, more accurate physics-based models and databases should be supplemented with this study to provide the better results.

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.