• Title/Summary/Keyword: inspection machine

Search Result 603, Processing Time 0.029 seconds

A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm (머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구)

  • Yu-Jeong Jeong;Jung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2024
  • While the importance of the water quality environment is being emphasized, the water quality index for improving the water quality of urban rivers in Gwangju Metropolitan City is an important factor affecting the aquatic ecosystem and requires accurate prediction. In this paper, the XGBoost and LightGBM machine learning algorithms were used to compare the performance of the water quality inspection items of the downstream Pyeongchon Bridge and upstream BanghakBr_Gwangjucheon1 water systems, which are important points of Gwangju Stream, as a result of statistical verification, three water quality indicators, Nitrogen(TN), Nitrate(NO3), and Ammonia amount(NH3) were predicted, and the performance of the predictive model was evaluated by using RMSE, a regression model evaluation index. As a result of comparing the performance after cross-validation by implementing individual models for each water system, the XGBoost model showed excellent predictive ability.

An Adaptive Multi-Level Thresholding and Dynamic Matching Unit Selection for IC Package Marking Inspection (IC 패키지 마킹검사를 위한 적응적 다단계 이진화와 정합단위의 동적 선택)

  • Kim, Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.245-254
    • /
    • 2002
  • IC package marking inspection system using machine vision locates and identifies the target elements from input image, and decides the quality of marking by comparing the extracted target elements with the standard patterns. This paper proposes an adaptive multi-level thresholding (AMLT) method which is suitable for a series of operations such as locating the target IC package, extracting the characters, and detecting the Pinl dimple. It also proposes a dynamic matching unit selection (DMUS) method which is robust to noises as well as effective to catch out the local marking errors. The main idea of the AMLT method is to restrict the inputs of Otsu's thresholding algorithm within a specified area and a partial range of gray values. Doing so, it can adapt to the specific domain. The DMUS method dynamically selects the matching unit according to the result of character extraction and layout analysis. Therefore, in spite of the various erroneous situation occurred in the process of character extraction and layout analysis, it can select minimal matching unit in any environment. In an experiment with 280 IC package images of eight types, the correct extracting rate of IC package and Pinl dimple was 100% and the correct decision rate of marking quality was 98.8%. This result shows that the proposed methods are effective to IC package marking inspection.

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

The analysis of EDM characteristics for Cu-electrode using LIGA process (LIGA 공정을 이용한 Cu전극의 방전가공 특성 분석)

  • Lee, S.H.;Jung, T.S.;Chang, S.S.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.383-386
    • /
    • 2007
  • In this study, the analysis was carried out for Electrical Discharge Machining (EDM) characteristics of the Cu electrodes by LIGA process. The shape of electrodes has 324 pins for the cavity of BGA(Ball Grid Array) type test socket mold. BGA test sockets are used in the inspection process of the semi-conductor I.C chip manufacturing. In the work, the machining performance for EDM of the electrodes was analyzed on dimensional accuracy and wear rate. The dimensional accuracy was measured for dimension of the pins, pitch size between the pins and the roundness of corner edge using optical measuring machine.

  • PDF

Efficient Eye Location for Biomedical Imaging using Two-level Classifier Scheme

  • Nam, Mi-Young;Wang, Xi;Rhee, Phill-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.828-835
    • /
    • 2008
  • We present a novel method for eye location by means of a two-level classifier scheme. Locating the eye by machine-inspection of an image or video is an important problem for Computer Vision and is of particular value to applications in biomedical imaging. Our method aims to overcome the significant challenge of an eye-location that is able to maintain high accuracy by disregarding highly variable changes in the environment. A first level of computational analysis processes this image context. This is followed by object detection by means of a two-class discrimination classifier(second algorithmic level).We have tested our eye location system using FERET and BioID database. We compare the performance of two-level classifier with that of non-level classifier, and found it's better performance.

Detection of Calibration Patterns for Camera Calibration with Irregular Lighting and Complicated Backgrounds

  • Kang, Dong-Joong;Ha, Jong-Eun;Jeong, Mun-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.746-754
    • /
    • 2008
  • This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.

Visual Bean Inspection Using a Neural Network

  • Kim, Taeho;Yongtae Do
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.644-647
    • /
    • 2003
  • This paper describes a neural network based machine vision system designed for inspecting yellow beans in real time. The system consists of a camera. lights, a belt conveyor, air ejectors, and a computer. Beans are conveyed in four lines on a belt and their images are taken by a monochrome line scan camera when they fall down from the belt. Beans are separated easily from their background on images by back-lighting. After analyzing the image, a decision is made by a multilayer artificial neural network (ANN) trained by the error back-propagation (EBP) algorithm. We use the global mean, variance and local change of gray levels of a bean for the input nodes of the network. In an our experiment, the system designed could process about 520kg/hour.

  • PDF

System Development for Automatic Form Inspecion by Digital Image Processing (디지탈 이미지프로세싱을 이용한 자동외관검사장치 개발)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.57-62
    • /
    • 1996
  • Basically, the idea underlying most edge-detection technique is the computation of a local derivative operator used for edge detection in gray level image. This concept can be easily illustrated with the aid of object which shows an image of a simple lilght on a dark background, Using the gray level profile along a horizontal scan line of the image. the first and second derivatives of it were acquired. This study is to develop an automatic measuring system based on the digital image processing which can be applied to the real time measurement of the characteristics of the ultra-thin thickness. The experimental results indicate that the developed automatic inspection can be applied in real situation.

  • PDF