• Title/Summary/Keyword: insight learning

Search Result 140, Processing Time 0.023 seconds

A Study on the Development of Instructional Materials for Systematic "Programming" by Realization of the Mathematical Program (수학 프로그램 구현을 통한 체계적 '프로그래밍' 교수 자료 개발에 관한 연구)

  • 박광철;김종훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.11
    • /
    • pp.1407-1420
    • /
    • 2001
  • There is an increasing concern about computer education with the age of knowledge-based society. The learning programming language is taking an important role of computer education. However, the special emphasis in learning programming language has been attached to memorizing the programming language by rote and learning computer programs. Therefore, those were not much useful tools to develope a logical intelligence of the meanings of programming language and the methods of realization. It is positively necessary to improve the programming education efficiently because of the objects of knowledge of computing and raising an efficiency of problem solving. Under the circumstances, this research is aimed at representing an useful education model through developing a mathmatical program into each part of the C programming language, which would be a new supplier of an basic insight into the programming language and techniques. Accordingly it is thought that the research material will be an useful model to increase interests and concerns as well as to raise an efficiency of problem solving or a logical intelligence going through the process of studying programming language.

  • PDF

Preservice Teachers' Writing Performance Producing Proofs and Counterexamples about Limit of Sequence (예비교사들을 대상으로 한 증명활동과 반례생성 수행결과 분석 : 수열의 극한을 중심으로)

  • Lee, Jeong-Gon;Lew, Hee-Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.379-398
    • /
    • 2011
  • In learning environment at mathematics education, prove and refute are essential abilities to demonstrate whether and why a statement is true or false. Learning proofs and counter examples within the domain of limit of sequence is important because preservice teacher encounter limit of sequence in many mathematics courses. Recently, a number of studies have showed evidence that pre service and students have problem with mathematical proofs but many research studies have focused on abilities to produce proofs and counter examples in domain of limit of sequence. The aim of this study is to contribute to research on preservice teachers' productions of proofs and counter examples, as participants showed difficulty in writing these proposition. More importantly, the analysis provides insight and understanding into the design of curriculum and instruction that may improve preservice teachers' learning in mathematics courses.

  • PDF

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

Sentiment Analysis for COVID-19 Vaccine Popularity

  • Muhammad Saeed;Naeem Ahmed;Abid Mehmood;Muhammad Aftab;Rashid Amin;Shahid Kamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1377-1393
    • /
    • 2023
  • Social media is used for various purposes including entertainment, communication, information search, and voicing their thoughts and concerns about a service, product, or issue. The social media data can be used for information mining and getting insights from it. The World Health Organization has listed COVID-19 as a global epidemic since 2020. People from every aspect of life as well as the entire health system have been severely impacted by this pandemic. Even now, after almost three years of the pandemic declaration, the fear caused by the COVID-19 virus leading to higher depression, stress, and anxiety levels has not been fully overcome. This has also triggered numerous kinds of discussions covering various aspects of the pandemic on the social media platforms. Among these aspects is the part focused on vaccines developed by different countries, their features and the advantages and disadvantages associated with each vaccine. Social media users often share their thoughts about vaccinations and vaccines. This data can be used to determine the popularity levels of vaccines, which can provide the producers with some insight for future decision making about their product. In this article, we used Twitter data for the vaccine popularity detection. We gathered data by scraping tweets about various vaccines from different countries. After that, various machine learning and deep learning models, i.e., naive bayes, decision tree, support vector machines, k-nearest neighbor, and deep neural network are used for sentiment analysis to determine the popularity of each vaccine. The results of experiments show that the proposed deep neural network model outperforms the other models by achieving 97.87% accuracy.

The Roles of Structural Similarity, Analytic Activity and Comparative Activity in Stage of Similar Mathematical Problem Solving Process (유사 문제 해결에서 구조적 유사성, 분석적 활동 그리고 비교 활동의 역할)

  • Roh, Eun-Hwan;Jun, Young-Bae;Kang, Jeong-Gi
    • Communications of Mathematical Education
    • /
    • v.25 no.1
    • /
    • pp.21-45
    • /
    • 2011
  • It is the aim of this paper to find the requisites for the target problem solving process in reference to the base problem and to search the roles of those. Focusing on the structural similarity, analytic activity and comparative activity in stage of similar mathematical problem solving process, we tried to find the roles of them. We observed closely how four students solve the target problem in reference to the base problem. And so we got the following conclusions. The insight of structural similarity prepare the ground appling the solving method of base problem in the process solving the target problem. And we knew that the analytic activity can become the instrument which find out the truth about the guess. Finally the comparative activity can set up the direction of solution of the target problem. Thus we knew that the insight of structural similarity, the analytic activity and the comparative activity are necessary for similar mathematical problem to solve. We think that it requires the efforts to develop the various programs about teaching-learning method focusing on the structural similarity, analytic activity and comparative activity in stage of similar mathematical problem solving process. And we also think that it needs the study to research the roles of other elements for similar mathematical problem solving but to find the roles of the structural similarity, analytic activity and comparative activity.

A Reconstruction of Area Unit of Elementary Mathematics Textbook Based on Freudenthal's Mathematisation Theory (Freudenthal의 수학화 이론에 근거한 제 7차 초등수학 교과서 5-가 단계 넓이 단원의 재구성)

  • You, Mi-Hyun;Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.115-140
    • /
    • 2009
  • Freudenthal has advocated the mathematisation theory. Mathematisation is an activity which endow the reality with order, through organizing phenomena. According to mathematisation theory, the departure of children's learning of mathematics is not ready-made formal mathematics, but reality which contains mathematical germination. In the first place, children mathematise reality through informal method, secondly this resulting reality is mathematised by new tool. Through survey, it turns out that area unit of Korea's seventh elementary mathematics textbook is not correspond to mathematisation theory. In that textbook, the area formular is hastily presented without sufficient real context, and the relational understanding of area concept is overwhelmed by the practice of the area formular. In this thesis, first of all, I will reconstruct area unit of seventh elementary textbook according to Freudenthal's mathematisation theory. Next, I will perform teaching experiment which is ruled by new lesson design. Lastly, I analysed the effects of teaching experiment. Through this study, I obtained the following results and suggestions. First, the mathematisation was effective on the understanding of area concept. Secondly, in both experimental and comparative class, rich-insight children more successfully achieved than poor-insight ones in the task which asked testee comparison of area from a view of number of unit square. This result show the importance of insight in mathematics education. Thirdly, in the task which asked testee computing area of figures given on lattice, experimental class handled more diverse informal strategy than comparative class. Fourthly, both experimental and comparative class showed low achievement in the task which asked testee computing area of figures by the use of Cavalieri's principle. Fifthly, Experiment class successfully achieved in the area computing task which resulting value was fraction or decimal fraction. Presently, Korea's seventh elementary mathematics textbook is excluding the area computing task which resulting value is fraction or decimal fraction. By the aid of this research, I suggest that we might progressively consider the introduction that case. Sixthly, both experimental and comparative class easily understood the relation between area and perimeter of plane figures. This result show that area and perimeter concept are integratively lessoned.

  • PDF

Marketing for Real and Virtual Museums: A marketing Model to Explain Visitor Behavior in Real Museums and an Outlook on its Applicability to Virtual Museums

  • Terlutter, Ralf;Diehl, Sandra
    • Journal of Global Scholars of Marketing Science
    • /
    • v.10
    • /
    • pp.45-70
    • /
    • 2002
  • The purpose of this study is to obtain more insight into the explanation and prognosis of consumer behavior in real and virtual museums. The analysis focuses on the influence of the museum environment on the museum patrons (rather than on the influence of the art objects). On the basis of the emotional approach to environmental psychology by Mehrabian and Russell (1974), a behavior model has been developed for museums. The model, which is based on the emotional variables pleasure, arousal and dominance (PAD), is also enhanced by cognitive variabies (learning attractiveness, education standard and information demand). The enhancement of the classical model was necessary because cognitive variables play a major role in cultural institutions such as museums: One important objective of museums is the communication of cultural knowledge to visitors. The model is tested empirically using structural equation modeling. 301 visitors were interviewed individually. Two different museum environments were represented using visual stimuli. The theoretical model for museums can be proved empirically. The degree to which the model fits the empirical data was extensively tested. The model showed high compatibility with the data and could be accepted. The study proves that a model can be developed, which explains visitor behavior in museums. The model shows museum designers how museums should be designed to be both emotionally appealing and a learning environment. Based on empirical studies in virtual stores on the Internet, it is discussed whether the research findings in these environments may be applied to virtual museum environments. In order to create an emotionally appealing virtual museum, it is recommended that one uses a 3-dimensional representation to offer various possibilities for interaction and to create a multi-sensual environment that appears highly realistic.

  • PDF

Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami- (중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로)

  • Seo, Ji Hee;Yeun, Jong Kook;Lee, Kwang Ho
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.785-799
    • /
    • 2013
  • The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.

  • PDF

Increasing Splicing Site Prediction by Training Gene Set Based on Species

  • Ahn, Beunguk;Abbas, Elbashir;Park, Jin-Ah;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2784-2799
    • /
    • 2012
  • Biological data have been increased exponentially in recent years, and analyzing these data using data mining tools has become one of the major issues in the bioinformatics research community. This paper focuses on the protein construction process in higher organisms where the deoxyribonucleic acid, or DNA, sequence is filtered. In the process, "unmeaningful" DNA sub-sequences (called introns) are removed, and their meaningful counterparts (called exons) are retained. Accurate recognition of the boundaries between these two classes of sub-sequences, however, is known to be a difficult problem. Conventional approaches for recognizing these boundaries have sought for solely enhancing machine learning techniques, while inherent nature of the data themselves has been overlooked. In this paper we present an approach which makes use of the data attributes inherent to species in order to increase the accuracy of the boundary recognition. For experimentation, we have taken the data sets for four different species from the University of California Santa Cruz (UCSC) data repository, divided the data sets based on the species types, then trained a preprocessed version of the data sets on neural network(NN)-based and support vector machine(SVM)-based classifiers. As a result, we have observed that each species has its own specific features related to the splice sites, and that it implies there are related distances among species. To conclude, dividing the training data set based on species would increase the accuracy of predicting splicing junction and propose new insight to the biological research.

Current Issues and Future Considerations in Undergraduate Medical Education from the Perspective of the Korean Medical Doctor Development System (우리나라 의사양성체제의 관점에서 본 의과대학 교육의 문제점과 개선방향)

  • Han, Jae Jin
    • Korean Medical Education Review
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • Observation of the current Korean medical education and training system shows that certain negative traits of unchangeable solidification engraft themselves so deeply into the overarching system that they are now hampering the state of the national health welfare. Focusing only on undergraduate medical education, we can point out some glaring side-effects that should be of concern to any stakeholder. For instance, a graduate can legally begin his career as an independent practitioner immediately after passing the licensing exam and return to the old stuck school-year system of 2-year-premedical and 4-year-medical programs where outcome-based and integrated curricula are incomplete and unsatisfactory. In terms of learning opportunities, the balance between patient care and public health, as well as that between in-hospital highly specialized practice and community-based general practice, has worsened. Every stakeholder should be aware of these considerations in order to obtain the insight to forge a new direction. Moreover, our medical schools must prepare our students to take on the global roles of patient care within the Fourth Industrial Revolution, health advocacy for the imminent super-aged society, and education and research in the bio-health industry, by building and applying the concept of academic medicine. We will need to invest more resources, including educational specialists, into the current undergraduate medical education system in order to produce proper outcomes, smart curriculum, innovative methods of teaching and learning, and valid and reliable monitoring and evaluation. The improved quality of undergraduate medical education is the starting point for the success of the national system for public health and medical care as a whole, and therefore its urgency and significance should be emphasized to the public. The medical society should go beyond fixing what is broken and usher in a new era of cooperation and collaboration that invites other health professionals, governmental partners, law-makers, opinion leaders, and the general public in its steps toward the future.