• Title/Summary/Keyword: insecticidal protein

Search Result 73, Processing Time 0.027 seconds

Investigation of Agrobacterium-mediated Transient dsRNA Expression in Tobacco

  • Choi, Wonkyun;Lim, HyeSong;Seo, Hankyu;Kim, Dong Wook
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.394-402
    • /
    • 2019
  • The Agrobacterium tumefaciens mediated gene transfer is widely used to generate genetic transformation of plants and transient assay of temporal exogenous gene expression. Syringe infiltration system into tobacco (Nicotiana benthamiana) leaves is a powerful tool for transient expression of target protein to study protein localization, protein-protein binding and protein production. However, the protocol and technical information of transient gene expression, especially double strand RNA (dsRNA), in tobacco using Agrobacterium is not well known. Recently, dsRNA is crucial for insecticidal effect on destructive agronomic pest such as Corn rootworm. In this study, we investigated the factor influencing the dsRNA expression efficiency of syringe agro-infiltration in tobacco. To search the best combination for dsRNA transient expression in tobacco, applied two Agrobacterium cell lines and three plant vector systems. The efficiency of dsRNA expression has estimated by real-time PCR and digital PCR. As a result, pHellsgate12 vector constructs showed the most effective accumulation of dsRNA in the cell. These results indicated that the efficiency of dsRNA expression was depending on the kind of vector rather than Agrobacterium cells. In summary, the optimized combination of transient dsRNA expression system in tobacco might be useful to in vivo dsRNA expression for functional study and risk assessment of dsRNA.

Molecular Characterization of A Novel Bacillus thuringiensis Strain from China

  • Qi Xu Feng;Li Ming Shun;Choi Jae Young;Kim Yang-Su;Wang Yong;Kang Joong Nam;Choi Heekyu;Je Yeon Ho;Song Ji Zhen;Li Jian Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2005
  • A strain of Bacillus thuringiensis that showed signifi­cantly high toxicity to Plutella xylostella was isolated from a dust sample collected from Chinese tobacco warehouse and characterized. The isolate named B. thuringiensis LY-99 was determined to belong to subsp. alesti (H3a3c) by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid and crystal protein patterns of the LY-99 were different from those of the reference strain, subsp. alesti. PCR analysis with specific primers revealed that this isolate contained abundant cry genes including crylAa, crylAc, crylB, crylD, crylE, crylF and cry2 genes, which was absolutely different from cry gene profile of the subsp. alesti. In addition, insecticidal activity of the LY-99 against P. xylostella larvae was about 44 times higher than that of the subsp. alesti.

Molecular Cloning of Two cDNAs Encoding an Insecticidal Toxin from the Spider, Araneus ventricosus, and Construction of a Recombinant Baculovirus Expressing a Spider Toxin

  • Chung, Eun-Hwa;Lee, Kwang-Sik;Han, Ji-Hee;Je, Yeon-Ho;Chang, Jin-Hee;Roh, Jong-Yul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • We have cloned cDNAs encoding toxin from the spider, Araneus ventricosus, and constructed a recombinant baculovirus expressing the insecticidal toxin. The cDNAs encoding toxin were cloned from the cDNA library of A. ventricosus. Sequence analysis of the cDNAs encoding the toxin of A. ventricosus revealed that the 240 bp cDNA for AvTox-1 and 192 bp cDNA for AvTox-2 have an open reading frame of 80 and 64 amino acid residues, respectively. The deduced protein sequence of the toxin genes of AvTox-1 and AvTox-2 was aligned to that of the snack Anemonia sulcata and scorpion Centruroides limpidus limpidus, respectively. Northern blot analysis indicated that AvTox-2 toxin gene showed a fat body-spe-cific expression pattern at the transcriptional level. Furthermore, we have explored the possibility of improving baculovirus by incorporating the A. vontricosus toxin gene into Bombyx mori nuclear polyhedrosis virus genome under the control of polyhedrin promoter, The AvTox-2 toxin gene was expressed as approximately 5.8 kDa band in the recombinant baculovirus-injected silkworm larvae. Bioassays with the recombinant virus expressing AvTox-2 on 5th instar silkworm larvae demonstrated a decrease in the time to kill $(LT_{50} days)$ compared to wild-type BmNPV-Kl $(LT_{50} 6.72 days)$ in the injection of 10 viruses. These results indicate that A. ventricosus toxin is a novel member of the spider toxin family, suggesting that the toxin gene can be used in recombinant baculoviruses to reduce insect feeding damage and increase the speed of insect kill.

Expression and Synergistic Effect of Bacillus thuringiensis CrylAc in Lepidopteran Toxic Strain to Plutella xylostella

  • Kang, Joong-Nam;Roh, Jong-Yul;Shin, Sang-Chul;Ko, Sang-Hyun;Chung, Yeong-Jin;Kim, Yang-Su;Wang, Yong;Choi, Hee-Kyu;Li, Ming-Shun;Choi, Jae-Young;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.33-36
    • /
    • 2007
  • To improve insecticidal activity of B. thuringiensis 2385-1 (Bt 2385-1), a recombinant plasmid, pHT1K-1Ac, was introduced into lepidopteran toxic Bt 2385-1 by electroporation. The presence of the recombinant plasmid in Bt 2385-1 after electroporation was confirmed by PCR. Bt 2385-1 transformant was named as Bt pHT1K-1Ac/2385-1 (1K-1Ac/2385-1). The 1K-1Ac/2385-1 transformant produced bipyramidal-shaped parasporal inclusion as like the wild-type strain, Bt 2385-1, and showed an 130 kDa band of Cry1Ac protein. The insecticidal activity of 1K-lAc/2385-1 against S. exigua was similar to that of Bt 2385-1 but the $LC_{50}$ value of transformant against P. xylostella was 1.8 times lower. Through these bioassay results, it was confirmed that toxicity of Bt 2385-1 transformant showed synergistic effect by introducing Cry1Ac. These results suggested that the multiple expressions of Cry proteins in a promising Bt strain may interact synergistically in insect midgut, resulting in increase of toxicity and expansion of host spectrum.

Extracellular Novel Metalloprotease from Xenorhabdus indica and Its Potential as an Insecticidal Agent

  • Pranaw, Kumar;Singh, Surender;Dutta, Debjani;Singh, Nirpendra;Sharma, Garima;Ganguly, Sudershan;Kalia, Vinay;Nain, Lata
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1536-1543
    • /
    • 2013
  • Proteases produced by Xenorhabdus are known to play a significant role in virulence leading to insect mortality. The present study was undertaken to purify and characterize protease from Xenorhabdus indica, an endosymbiont of nematode Steinernema thermophilum, and to decipher its role in insect mortality and its efficacy to control Helicoverpa armigera. A set of 10 strains of Xenorhabdus isolated from different regions of India were screened for protease activity on the basis of zone of clearing on gelatin agar plates. One potent strain of Xenorhabdus indica was selected for the production of protease, and the highest production (1,552 U/ml) was observed at 15-18 h of incubation at $28^{\circ}C$ in soya casein digest broth. The extracellular protease was purified from culture supernatant using ammonium sulfate precipitation and ion-exchange chromatography. The enzyme was further characterized by SDS-PAGE and zymography, which confirmed the purity of the protein and its molecular mass was found to be ~52 kDa. Further MALDI-TOF/TOF analysis and effect of metal chelating agent 1,10-phenanthrolin study revealed the nature of the purified protease as a secreted alkaline metalloprotease. The bioefficacy of the purified protease was also tested against cotton bollworm (Helicoverpa armigera) and resulted in $67.9{\pm}0.64%$ mortality within one week. This purified protease has the potential to be developed as a natural insecticidal agent against a broad range of agriculturally important insects.

Isolation and Activity of Insect Pathogenic Bacillus thuringiensis Strain from Soil (국내 토양으로부터 곤충병원성 세균인 Bacillus thuringiensis 균주의 분리 및 생물검정)

  • Kim, Da-A;Kim, Jin-Su;Kil, Mi-Ra;Youn, Young-Nam;Park, Dong-Sik;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.45 no.3 s.144
    • /
    • pp.357-362
    • /
    • 2006
  • Bacillus thuringiensis strains were isolated from the domestic soil and a strain was selected that had a new host range and high toxicity against agriculture insect pest. The 142 samples of soil were sampled from the mountains, paddy fields and patches, in Daejon, Chungnam, Chungbuk and Jeonbuk and used for the investigation. Sixteen B. t strains were isolated from 12 samples among collected samples. There were 11 strains that showed toxical activity on Plutella xylostella (Lepidoptera: Yponomeutidae), 7 steins on Spodoptera litura (Lepidoptera: Noctuidae), 5 strains on Arete coerulea (Lepidoptera: Noctuidae), 5 strains on Culex pipiens pallens (Diptera: Culicidae) among the 16 isolated B. t strains. But there were not any strains that showed activity against Hyphanria cunea (Lepidoptera: Arctiidae) and Sitophilus oryzae (Coleoptera: Rhynchophoridae). And also some of B. thuringiensis strains showed insecticidal activity with 2, 3 or 4 kinds of insects. But there were also 3 strains that did not show any activities to the 6 insects which were used in the experiment. When examined with a phase-contrast microscope, the insecticidal crystal protein produced from 16 selected strains had 13 bipyramidal and 3 spherical shapes. The insecticidal bioactivity of the S. litura showed 100% mortality when there were $1.3{\times}10^{7}\;(cfu/ml)$ of CAB109 isolates.

Insecticidal Toxin from Xenorhabdus nematopilus, Sysbiotic Bacterium Associated with Entomopathogenic Nematode Sreinernema glaseri

  • Ryu, Keun-Garp;Bae, Jun-Sang;Yu, Yeon-Su;Park, Sun-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.141-145
    • /
    • 2000
  • Entomopathogenic nematodes are being used for insect control. We purified a toxin secreted by the insect-pathogenic bacterium, Xenorhadbus nematophilus, which lives in the gut of entomopathogenic nematodes. Culture broth of X. nematophilus was separated by centrifugation and concentrated by ultration. The concentrated culture broth was applied to a DEAE Sephadex A-50 column, and proteins were eluted stepwise with increasing concentrations of KCI. Fractions column. The molecty weight of purified toxin was39 kDa on SDS-PAGE, and Fourier tranformed infrared (FTIR) spectroscopy indicated that this toxin could be a new protein exhiting the charactristics of C=O stretching peak near 1650cm-1.

  • PDF

Parasporin-4, A Novel Cancer Cell-killing Protein Produced by Bacillus thuringiensis

  • Inouye, Kuniyo;Okumura, Shiro;Mizuki, Eiichi
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.219-227
    • /
    • 2008
  • Bacillus thuringiensis was isolated as a pathogen of the sotto disease of silkmoth larvae about a hundred years ago. Since then, this bacterium has attracted attentions of not only insect pathologists but also many other scientists who are interested in its strong and specific insecticidal activity. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as a landmark discovery of par asp orin, a cancer cell-specific cytotoxin produced by B. thuringiensis. In this review, we describe examination of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using a surface plasmon resonance-based biosensor, identification and characterization of parasporin-4, the latest parasporin produced by the B. thuringiensis A1470 strain, and an effective method for preparing the parasporin-4 from inclusion bodies expressed in the recombinant Escherichia coli cells.

Identification and Molecular Characterization of Insecticidal cryl-type Genes from Bacillus thuringiensis 2385-1

  • Li, Ming-Shun;Park, Jae-Young;Roh, Jong-Yul;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.114-115
    • /
    • 2003
  • A Bacillus thuringiensis isolate, Bt 2385-1, which showed toxicity to lepidopteran, was isolated from Korean soil sample and characterized. PCR-RFLP showed that this isolate contains two novel cryl-type crystal protein genes. In this study, we designed cryl-type specific primer set (ATG1-F and N400-R) to clone the toxic domain of the all cryl-type genes. The two novel rlyl-type toxin genes in addition to crylJal gene were cloned and sequenced. (omitted)

  • PDF

Potential Strategies for Prolonging the Usefulness of Bacillus thuringiensis in Engineered Rice

  • Bottrell, D.G.;Aguda, R.M.;Gould, F.L.;Theunis, W.;Demayo, C.G.;Magalit, V.F.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.247-255
    • /
    • 1992
  • A laboratory bioassay that incorporates Bacillus thuringiensis (Bt) purified crystal protein toxins into an artificial diet has identified three toxins, CryIA(b), CryIA(c), and CryIIA, to by effective against the yellow stemborer, Scirpophaga incertulas(Walker). Research is aimed at engineering rice that incorporates genes of one of or more of these toxins so as to mimic the insecticidal action of the insect to Bt. The paper discusses potential strategies for slowing the rate of adaptation that include the use of multiple Bt toxins, promoters that express the toxins only in specific plant tissues at specific times, and mixing transgenic and non-transgenic plants.

  • PDF