Molecular Characterization of A Novel Bacillus thuringiensis Strain from China

  • Qi Xu Feng (College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Li Ming Shun (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi Jae Young (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Kim Yang-Su (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Wang Yong (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Kang Joong Nam (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi Heekyu (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Je Yeon Ho (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Song Ji Zhen (Zhengzhou Tobacco Research Institute, China National Tobacco Corporation) ;
  • Li Jian Hong (College of Plant Science and Technology, Huazhong Agricultural University)
  • Published : 2005.09.01

Abstract

A strain of Bacillus thuringiensis that showed signifi­cantly high toxicity to Plutella xylostella was isolated from a dust sample collected from Chinese tobacco warehouse and characterized. The isolate named B. thuringiensis LY-99 was determined to belong to subsp. alesti (H3a3c) by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid and crystal protein patterns of the LY-99 were different from those of the reference strain, subsp. alesti. PCR analysis with specific primers revealed that this isolate contained abundant cry genes including crylAa, crylAc, crylB, crylD, crylE, crylF and cry2 genes, which was absolutely different from cry gene profile of the subsp. alesti. In addition, insecticidal activity of the LY-99 against P. xylostella larvae was about 44 times higher than that of the subsp. alesti.

Keywords

References

  1. Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Ecola and M. G. Koziel (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbial. 57, 3057-3061
  2. Ceron, J., A. Ortiz, R. Quintero, L. Guereca and A. Bravo (1995) Specific PCR primers detected to identify cryl and cryIII gene within a Bacillus thuringiensis strain collection. Appl. Environ. Microbial. 61,3826-3831
  3. Ceron, J., L. Covarrubias, R. Quintero, A. Ortiz, M. Ortiz, E. Aranda, L. Linda and A. Bravo (1994) PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis. Appl. Environ. Microbial. 60, 353-356
  4. Chang, J. H., J. Y. Roh, Y. H. Je, H. W. Park, B. R. Jin, S. D. Woo and S. K. Kang (1998) Isolation of a strain of Bacillus thuringiensis ssp. kurstaki HD-1 encoding $\delta$-endotoxin Cry1E. Lett. Appl. Microbiol. 26,387-390 https://doi.org/10.1046/j.1472-765X.1998.00355.x
  5. Entwistle, F. P., S. J. Cory, J. M. Bailey and S. Higgs (1993) Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Wiley & Sons, Ltd., Chichester
  6. Ferre, J., M. D. Real, J. Van Rie, S. Jansens and M. Peferoen (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119-5123 https://doi.org/10.1073/pnas.88.12.5119
  7. Gleave, A. P., R. Williams and R. J. Hedqes (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of cry V gene cloned from B. thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 59, 1683-1687
  8. Groot, A. T. and M. Dicke (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31,387-406 https://doi.org/10.1046/j.1365-313X.2002.01366.x
  9. Herron, G. A., K. Powis and J. Rophail (2001) Insecticide resistance in Aphis gossypii glover (Hemiptera: Aphididae), a serious threat to Australian cotton. Aust. J Entomol. 40, 85-91 https://doi.org/10.1046/j.1440-6055.2001.00200.x
  10. Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255
  11. Huang, Z. P., C. H. Guan and X. Guan (2004) Cloning, characterization and expression of a new cry1Ab gene from Bacillus thuringiensis WB9. Biotechnol. Lett. 26, 1557-1561 https://doi.org/10.1023/B:BILE.0000045652.00137.1f
  12. Kalman, S., K. L. Kiehne, J. L. Libs and T. Yamamoto (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59, 1131-1137
  13. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv. Insect Physiol. 24,275-308 https://doi.org/10.1016/S0065-2806(08)60085-5
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  15. Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent and I. Thiery (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl. Microbiol. 86, 660-672 https://doi.org/10.1046/j.1365-2672.1999.00710.x
  16. Lee, C. S. and A. I. Aronson (1991) Cloning and analysis of delta-endotoxin genes from Bacillus thuringiensis subsp. alesti. J Bacteriol. 173, 6635-6638
  17. Leroy, T., A. M. Henry, M. Royer, I. Altosaar, R. Frutos and D. Duris (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep. 19, 382-389 https://doi.org/10.1007/s002990050744
  18. Li, J., J. Carroll and D. J. Ellar (1991) Crystal structure of insecticidal a-endotoxin from Bacillus thuringiensis at 2.5 $\AA$ resolution. Nature 353, 815-821 https://doi.org/10.1038/353815a0
  19. Li, J., P. A. Koni and D. J. Ellar (1996) Structure of the mosquitocidal a-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implication for membrane pore formation. J Mol. Biol. 257, 129-152 https://doi.org/10.1006/jmbi.1996.0152
  20. Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh and K. S. Boo (2002) Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45, 299-302 https://doi.org/10.1007/s00284-002-3755-0
  21. Lise, J., B. B. Michel, G. Cecile, M. Gil and G. Marc (1998) Transgenic plants for insect resistance. Plant Sci. 131, 1-11 https://doi.org/10.1016/S0168-9452(97)00239-2
  22. Meadows, M. P., D. J. Ellis, J. Butt, P. Jarret and H. D. Burges (1992) Distribution, frequency, and diversity of Bacillus thuringiensis in animal feed mill. Appl. Environ. Microbiol. 58, 1344-1350
  23. Ohba, M. and K. Aizawa (1978) Serological identication of Bacillus thuringeinsis and related bacteria isolated in Japan. J lnvertebr. Pathal. 32, 303-309 https://doi.org/10.1016/0022-2011(78)90193-3
  24. Russell, R. M., J. L. Robertson and S. E. Sauvin (1977) POLO: a new computer program for probit analysis. Bull. Entomol. Soc. Am. 23,209-213
  25. Schnepf, E., N. Crickmore, J. Van-Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler and D. H. Dean (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbial. Mol. Biol. 62, 775-806
  26. Tabashnik, B. E., Y. B. Liu, R. A. De Maagd and T. J. Dennehy (2000) Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl. Environ. Microbial. 66, 4582-4584 https://doi.org/10.1128/AEM.66.10.4582-4584.2000
  27. Thomas, W. E. and D. J. Ellar (1983) Bacillus thuringiensis var. israelensis crystal $\delta$-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell. Sci. 60, 181-197
  28. Zhang, H. Y., Z. N. Yu and W. X. Deng (2000) Composition and ecological distribution of cry proteins and their genotypes of Bacillus thuringiensis isolates from warehouses in China. J Invertebr. Pathol. 76, 191-197 https://doi.org/10.1006/jipa.2000.4970