• Title/Summary/Keyword: insect resources

Search Result 326, Processing Time 0.029 seconds

Integrated Pest Management Against Bactrocera Fruit Flies (Bactrocera 속 과실파리 종합관리기술)

  • Kim, Yonggyun;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.359-376
    • /
    • 2016
  • Increase in world trade commodities along with climate change entails frequent pest insect invasions from subtropical to temperate zones. Tephritidae is one of two families in fruit flies along with Drosophilidae and consists of more than 5,000 species. Some tephritid flies in genera Anastrepha, Rhagoletis, Ceratitis, and Bactrocera are highly invasive and give serious economic damages on fruits and vegetables in temperate zones. This review focuses mainly on Bactrocera fruit flies, which have been well studied in control techniques to defend their invasion and colonization. Though various control techniques against Bactrocera fruit flies have been developed, less efforts have been paid to establish efficient integrated pest management (IPM) programs. This review introduces current control techniques of fruit flies and some successful IPM programs implemented in subtropical islands. In addition, major fruit flies infesting crops in Korea have been also reviewed in their occurrence and control programs.

Mitochondrial DNA Sequence Variation of the Oriental Mole Cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae) in Korea

  • Kim, Ik-Soo;Cha, So-Young;Lee, Sun-Young;Kim, Seong-Ryul;Hwang, Jae-Sam;Li, Jianhong;Han, Yeon-Soo;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • The mole crickets, Gryllotalpa, are insect pest distributed in the world. In Korea, G. orientalis was reported to occur, but previous ecological studies suggested the presence of two ecological types. To test this hypothesis, we sequenced a portion of mitochondrial (mt) genome from 48 G. orientali individuals collected over five Korean localities: Busan, Suwon, Okchon, Wonju, and Gangneung. From the sequence analysis, only two haplotypes were obtained, but the sequence divergence between the two haplotypes was 11 %, suggesting the presence of two distinct genetic groups in Korea. Although the population of Busan, Okchon, Wonju, and Gangneung was identified as a single haplotype, but that of Suwon was occupied by both hapotypes. Considering sequence divergence of other insect species occurring in Korea, the divergence estimate found between the two haplotypes seems to be too large to be considered as identical species. This result may suggest that the two differentiated haplotypes found in this study may reflect the previously reported two ecological types found in Suwon, Korea. To further understand the genetic divergence of the two phylogenetic groups, analysis of more variable regions of G. orientalis genome is required.

Development and evaluation of a model for management of plant pests in organic cucumber cultivation

  • Ko, S.J.;Kang, B.R.;Kim, D.I.;Choi, D.S.;Kim, S.G.;Kim, H.K.;Kim, H.J.;Choi, K.J.;Kim, Y.C.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.263-266
    • /
    • 2011
  • Crop protection strategies in organic horticulture aim to prevent insect pest and plant disease problems through utilization of non-chemical based control means. In order to develop a model for management of plant diseases and insects in organic cucumber cultivation, we compared efficacies between chemical pesticide spraying system and biological control means in semi-forcing and retarding cucumber cultivation during 2005 and 2006. Conventional chemical spray program using various chemical pesticides was applied 5 - 10 days intervals, while two different non-chemical pesticide application programs using two formulated biopesticides Topseed$^{TM}$ and Q-fect$^{TM}$, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 1) and using egg-yolk and cooking oil(EYCO), Bordeaux mixture, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 2) were applied 5 - 7 days intervals during entire cucumber cultivation period. Efficacy of both biocontrol agents programs was effective to comparable to conventional chemical pesitice spray program to control plant diseases such as powdery mildew and downy mildew as well as insect pests such as aphids and thrips which are known as major threats in cucumber organic cultivation. In this study, we established and evaluated an effective and economic crop protection strategy using various biological resources can be used to control plant diseases and pests simultaneously in organic cucumber cultivation field.

A study on the Perception of Edible Insects and Edible Insect Foods of College Students Majoring in Culinary Arts

  • Young-Sim, Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.83-89
    • /
    • 2023
  • This study presents basic data that can be easily used in the field of cooking about edible insects which are future food and alternative food by investigating the perception of edible insects among culinary majors, who are potential consumers who can improve the utilization of edible insects. As a result, 79.0% of all subjects responded that they have heard of edible insects, and the methods of obtaining information on edible insects were 'friends, colleagues, family members, etc.' 76.8% had the experience of purchasing edible insects, and 71.9% of them purchased 'online' as the purchase method. The reason for purchasing edible insects was 'curiosity', and the purchase of edible insects in the form of 'food or food added' was the highest. In the future, 70.1% are willing to use edible insects, and in particular, the intention to participate in the 'development of new products using edible insects' was the highest. Therefore, in order to improve the utilization and consumption promotion of edible insects, which are emerging as future food resources, it is necessary to develop a multifaceted plan to improve the awareness of edible insects for university students majoring in cooking and to develop educational programs for developing various menus.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

Field monitoring and population genetic analysis of the dragon swallowtail Sericinus montela (Lepidoptera: Papilionidae), a vulnerable species in South Korea

  • Seung Hyun Lee;Jeong Sun Park;Jee-Young Pyo;Sung-Soo Kim;Heon Cheon Jeong;Iksoo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.3
    • /
    • pp.124-138
    • /
    • 2024
  • The International Union for Conservation of Nature and the Korean Red Data Book both categorize the dragon swallowtail Sericinus montela Grey, 1852 (Lepidoptera: Papilionidae) as a vulnerable insect. In South Korea, the main reason for this categorization is habitat destruction and deterioration, along with limited distribution mainly to the eastern region of South Korea, particularly to Gangwon-do and Gyeongsangbuk-do. Considering much of the information is older than ten years the renewed survey to estimate distributional stability is required, particularly under global warming. In addition, the population genetic diversity and isolation of S. montela, which is important information when seeking to evaluate its vulnerability, is not yet known. In this study, we visited 38 habitable sites, consisted of 15 sites with the previous record for the sightings of the species and 23 sites without such record. Moreover, nuclear ribosomal internal transcribed spacer region was sequenced for 56 individuals collected from seven sites. We observed S. montela at 20 sites, consisted of 11 recorded and 9 new sites in seven provinces, excluding Jeollanam-do and Jeju-do. Finding of the species in 9 new sites and location of the 4 in western region, which has a rare previous record are promising. However, failure to observe in 4 recorded sites and an extremely low observed number in new sites (5.3 vs. 17.6 individuals per site on average) is not optimistic. Population genetic data partially corroborate with the field observation data, showing that the populations in western region have lower genetic diversity and intermittent genetic isolation compared to those in eastern region. Taken these together, we suggest that S. montela should be remained as a vulnerable insect. However, more extensive field monitoring and co-dominant molecular data are required to verify this conclusion.

A Study on the Establishment of the Fresh Water Plant Industry for the Response of the Nagoya Protocol (나고야의정서 대응을 위한 담수식물 산업화 방향 설정 연구)

  • Ryu, Yoon-Jin;Cho, Dong-Gil;Kim, Sang-Cheol;Shin, Su-Young;Cho, Soo-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.161-180
    • /
    • 2017
  • As the competition for securing cross-border biological sovereignty becomes intensified due to the adoption of the Nagoya Protocol, this study analyzed patent trends only for freshwater plants in order to secure national biological sovereignty. As a result, freshwater plants include a total of 68 genera and 128 species, and a total of 60 genera and 3,256 patents were surveyed. Among them, iris was the most industrialized, 14.71% followed by angelica(8.48%) and Mentha(6.94%). However, unconfirmed eight genera (Aneilema, Artemisia Cabomba, Nymphoides, Pistia stratiotes L., Pseudoraphis Griff., Ruppia) are not patented freshwater plants and it is expected that patent entry is high and barrier is low in the future. Based on patent results, Cooperative Patent Classification analysis was carried out and as a result, a total of 15 industry sectors were derived. And biopharmaceutical(30.24%) was found to be the most industrialized industry sector followed by agricultural chemistry (28.89%), biochemical industry (16.25%). In the biomedical industry, angelica(17.74%) was the most used and Iris (9.55%), Sium(20.56%) and angelica (20.48%) were found to be the most used in agricultural chemistry, biochemical industry and bio food industry, respectively. The analysis of detailed industry fields for 15 industry sectors showed that medicines of unknown structure containing substances from plants (37.77%), raw materials (46.57%) such as insect repellants, attracting agents and preparation of peptides(16.82%) with more than 21 amino acids were most frequently used in biopharmaceutical, agricultural chemistry and biochemical industry, respectively. This study is of significance as a basic data to know which freshwater plants are used in which field in order to secure biological sovereignty and patent analysis is considered necessary to continuously secure the biological sovereignty for freshwater plants.

Analysis of Promoter Strength of Autographa californica Nuclear Polyhedrosis Virus IE1 Gene by Using Rreconmbinant Baculovirus

  • Cho, Eun-Sook;Park, Hae-Jin;Jin, Byung-Rae;Sohn, Hung-Dae;Kang, Seok-Woo;Yun, Eun-Young;Kim, Keun-Young;Je, Yeon-Ho;Kang, Seok-Kwon
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.2
    • /
    • pp.102-107
    • /
    • 1999
  • To analysis a promoter strength of Atographa californica nucler polyhedrosis virus (AcNPV) IE1 gene, an immediate viral gene, ${\beta}$-glactosidase gene as a reporter gene was introduced under the control of the IE1 promoter. The restriction fragment containing IE1 promoter and ${\beta}$-galctosidase gene from pAcIE1-gal were inserter into pBacPAK9 to yield transfer vector pAcNPV-IE1-gal. The pAcNPV-IE1-gal was cotransfected with AcNPV genomic DNA BacPAK6 into Sf9 cells to produce recombinant baculovirus AcNPV-IE1-gal. In addition, recombinant bacvulovirus AcNPV-gal, which express ${\beta}$-galac-tosidase under the control of the polyhedrin promoter, was constrer, was constructed to compared with AcNPV-IE1-gal. The recombinant viruses were respectively infected into Sf9 cells and characterized by the virus titer and expression of ${\beta}$-galactoxidase in Sf9 cells. The promoter strength of IE1 and polyhedrin promoters was determined by the amount of ${\beta}$-galactosidase secreted into medium by viral infection. The titer of AcNPV-IE1-Gal determined by plaque assays in Sf9 cells was similar to that of AcNPV-gal. However, expression level of ${\beta}$-galactosidase by AcNPV-IE1-gal was significantly lower than that by AcNPV-gal. In conclusion, promoter strength of IE1 was approximately 25-fold lower than that of polyhedrin.

  • PDF

Characterization of the v-cath Gene of Bombyx mori Nuclear Polyhedrosis Virus K1

  • Lee, Kwang Sik;Li, Jianhong;Je, Yeon Ho;Woo, Soo Dong;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.217-223
    • /
    • 2004
  • A cathepsin L-like cysteine protease, v-cath, encoded by the baculovirus has been shown to playa role in host liquefaction. We have identified a v-cath gene in the silkworm virus, Bombyx mori nuclear polyhedrosis virus (BmNPV) K1 strain. The 969 bp v-cath has an open reading frame of 323 amino acids. A putative cleavage site and catalytic sites were conserved in BmNPV-K1 v-cath. The predicted three-dimensional structure of BmNPV-K1 v-cath revealed that the overall fold of BmNPV-K1 v-cath is similar to that of other proteases of the papain family. The deduced amino acid sequence of BmNPV-K1 v-cath showed 98% and 97% protein sequence identity to BmNPV T3 strain and to Autographa californica nuclear polyhedrosis virus, respectively. The BmNPV-K1 v-cath differed at 4 amino acid positions from BmNPV T3. The v-cath gene in BmNPV-K1 genome is located on the EcoRV 6 kb and XhoI 9 kb fragments. Northern hybridization analysis of BmNPV K1 v-cath gene revealed that it is expressed late in infection.