DOI QR코드

DOI QR Code

Field monitoring and population genetic analysis of the dragon swallowtail Sericinus montela (Lepidoptera: Papilionidae), a vulnerable species in South Korea

  • Seung Hyun Lee (Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Jeong Sun Park (Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Jee-Young Pyo (Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Sung-Soo Kim (Research Institute for East Asian Environment and Biology) ;
  • Heon Cheon Jeong (Korea Native Animal Resources Utilization Convergence Research Institute, Soonchunhyang University) ;
  • Iksoo Kim (Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2024.07.31
  • Accepted : 2024.08.16
  • Published : 2024.09.30

Abstract

The International Union for Conservation of Nature and the Korean Red Data Book both categorize the dragon swallowtail Sericinus montela Grey, 1852 (Lepidoptera: Papilionidae) as a vulnerable insect. In South Korea, the main reason for this categorization is habitat destruction and deterioration, along with limited distribution mainly to the eastern region of South Korea, particularly to Gangwon-do and Gyeongsangbuk-do. Considering much of the information is older than ten years the renewed survey to estimate distributional stability is required, particularly under global warming. In addition, the population genetic diversity and isolation of S. montela, which is important information when seeking to evaluate its vulnerability, is not yet known. In this study, we visited 38 habitable sites, consisted of 15 sites with the previous record for the sightings of the species and 23 sites without such record. Moreover, nuclear ribosomal internal transcribed spacer region was sequenced for 56 individuals collected from seven sites. We observed S. montela at 20 sites, consisted of 11 recorded and 9 new sites in seven provinces, excluding Jeollanam-do and Jeju-do. Finding of the species in 9 new sites and location of the 4 in western region, which has a rare previous record are promising. However, failure to observe in 4 recorded sites and an extremely low observed number in new sites (5.3 vs. 17.6 individuals per site on average) is not optimistic. Population genetic data partially corroborate with the field observation data, showing that the populations in western region have lower genetic diversity and intermittent genetic isolation compared to those in eastern region. Taken these together, we suggest that S. montela should be remained as a vulnerable insect. However, more extensive field monitoring and co-dominant molecular data are required to verify this conclusion.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202305201).

References

  1. Ackery PR (1975) A guide to the genera and species of Parnassiinae (Lepidoptera: Papilionidae). Bull Br Mus Nat Hist Ent 31, 71-105. 
  2. Altieri M, Nicholls CI (2001) Ecological impacts of modern agriculture in the United States and Latin America. Globalization and the rural environment. Solbrig OT, Paarlberg R, Castri FD (eds.), pp. 121-135, Harvard University Press, Cambridge. 
  3. Cook RE (1979) Asexual reproduction: a further consideration. Am Nat 113, 769-772. https://doi.org/10.1086/283435 
  4. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205, 19-31. https://doi.org/10.1016/j.mbs.2006.09.015 
  5. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10, 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x 
  6. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotype: application to human mitochondrial DNA restriction date. Genetics 131, 479-491. https://doi.org/10.1093/genetics/131.2.479 
  7. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10, 1500-1508. https://doi.org/10.1046/j.1523-1739.1996.10061500.x 
  8. Frankham R (2005) Genetics and extinction. Biol Conserv 126, 131-140. https://doi.org/10.1016/j.biocon.2005.05.002 
  9. Gorenflo LJ, Warner DB (2016) Inside Cover Image. WIREs Water 3, 3. https://doi.org/10.1002/wat2.1156 
  10. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470, 479-485. https://doi.org/10.1038/nature09670 
  11. IUCN (International Union for Conservation of Nature) (2012) IUCN Red List Categories and Criteria: Version 3.1. Second edition. pp. 20-22. Gland and Cambridge. 
  12. IUCN (International Union for Conservation of Nature) (2023) The IUCN Red List of Threatened Species. Version 2023-1 [Internet]. Available from: https://www.iucnredlist.org. [accessed on 22 July, 2024]. 
  13. Ji YJ, Zhang DX, He LJ (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3, 581-585. https://doi.org/10.1046/j.1471-8286.2003.00519.x 
  14. Kang AR, Kim K-G, Park JW, Kim I (2012) Genetic diversity of the dung beetle, Copris tripartitus (Coleoptera: Scarabaeidae), that is endangered in Korea. Entomol Res 42, 247-261. https://doi.org/10.1111/j.1748-5967.2012.00470.x 
  15. Kim DS, Kwon YJ (2010) Metapopulation Dynamics of the Oriental Long-tailed Swallow Sericinus montela (Lepidoptera: Papilionidae) in Korea. Kor J Appl Entomol 49, 289-297. 
  16. Kim JH, Lee WK (1992) A hundred species of butterflies in Korea that we should know about. Hyeonamsa, Seoul. 
  17. Kim S-S, Hur PW (2009) Butterflies. pp. 16-17. Field guide, Seoul. 
  18. Kim S-S, Lee CM, Kwon T-S, Joo HZ, Sung JH (2012) Korean butterfly atlas [1996-2011]. pp. 146-147, Korea Forest Research Institute, Korea Disabled Human Good life Pub, Seoul. 
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581 
  20. Lanfear R, Kokko H, Eyre-Walker A (2014) Population size and the rate of evolution. Trends Ecol Evol 29, 33-41. https://doi.org/10.1016/j.tree.2013.09.009 
  21. Lee K-S, Lee J-S, Moon H-S (2021) Vascular plants in Yongchu Valley of Jeongbyeongsan in Changwon-si, Gyeongsangnam-do. J Environ Sci Int 30, 119-133. https://doi.org/10.5322/JESI.2021.30.2.119 
  22. Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6, 1110-1116. https://doi.org/10.1111/2041-210X.12410 
  23. Li X, Tao X, Wang Y, Ma F, Ye C, Zhou X, et al. (2021). Population genetics of Lepidoglyphus destructor inferred by the analysis of the mitochondrial cytochrome b gene and ribosomal internal transcribed spacer gene sequence. Int J Acarol 47, 670-676. https://doi.org/10.1080/01647954.2021.1985604 
  24. Li X, Wu S, Xu Y, Liu Y, Wang J (2022) Population Genetic Structure of Chlorops oryzae (Diptera, Chloropidae) in China. Insects 13, 327. https://doi.org/10.3390/insects13040327 
  25. Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey AR, et al. (2024). The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res 52, 521-525. https://doi.org/10.1093/nar/gkae241 
  26. Matsuka H (1981) An epoch of Sericinus montela. Yadoriga 103, 15-21. 
  27. Nakonechnaya OV, Kholina AB, Koren OG, Zhuravlev YN (2012) Genetic diversity of a rare species Aristolochia contorta Bunge (Aristolochiaceae) in Primorsky Krai. Russ J Genet 48, 152-162. https://doi.org/10.1134/S1022795411120088 
  28. Nam BE, Park HJ, Son GY, Kim JG (2020) An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta. J Wet Res 22, 100-105. https://doi.org/10.17663/JWR.2020.22.2.100 
  29. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. 
  30. NIBR (National Institute of Biological Resources) (2012a) Red Data Book of Endangered Insects in Korea I. pp. 138-139, Nature & Ecology, Paju. 
  31. NIBR (National Institute of Biological Resources) (2012b) Red Data Book of Endangered Insects in Korea I. pp. 144-145, Nature & Ecology, Paju. 
  32. Park S-H, Kim JH, Kim JG (2023) Effects of human activities on Sericinus montela and its host plant Aristolochia contorta. Sci Rep 13, 8289. https://doi.org/10.1038/s41598-023-35607-5 
  33. Park S-H, Nam BE, Kim JG (2019) Shade and physical support are necessary for conserving the Aristolochia contorta population. Ecol Eng 135, 108-115. https://doi.org/10.1016/j.ecoleng.2019.05.019 
  34. Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics 28, 2537-2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x 
  35. Pyo J-Y, Kim S-S, Park JS, Kim J-M, Song Y-K, Kim I (2023) Identification of Sympetrum depressiusculum Selys, 1841 in South Korea (Odonata: Libellulidae) According to Morphology and Genetic Markers. Insects 14, 733. https://doi.org/10.3390/insects14090733 
  36. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Method) Version 4. 10. Sinauer Associates, Sunderland.
  37. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7, 381-397. https://doi.org/10.1046/j.1365-294x.1998.00308.x 
  38. Zhou W, Rousset F, O'Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265, 509-515. https://doi.org/10.1098/rspb.1998.0324 
  39. Zhu DH, Gao S (2021) A prevalence survey of Wolbachia in butterflies from southern China. Entomol Exp Appl 169, 1157-1166. https://doi.org/10.1111/eea.13112