In this paper, we propose a novel way of combining multiple deep convolutional neural network (DCNN) architectures which work well for accurate video face identification by adopting a serial combination of 3D and 2D DCNNs. The proposed method first divides an input video sequence (to be recognized) into a number of sub-video sequences. The resulting sub-video sequences are used as input to the 3D DCNN so as to obtain the class-confidence scores for a given input video sequence by considering both temporal and spatial face feature characteristics of input video sequence. The class-confidence scores obtained from corresponding sub-video sequences is combined by forming our proposed class-confidence matrix. The resulting class-confidence matrix is then used as an input for learning 2D DCNN learning which is serially linked to 3D DCNN. Finally, fine-tuned, serially combined DCNN framework is applied for recognizing the identity present in a given test video sequence. To verify the effectiveness of our proposed method, extensive and comparative experiments have been conducted to evaluate our method on COX face databases with their standard face identification protocols. Experimental results showed that our method can achieve better or comparable identification rate compared to other state-of-the-art video FR methods.
벡터-매트릭스 곱셈을 인코히어런트(incoherent)광원에 의해 빠른 속도로 대량의 정보를 처리할 수 있는 IOVMM(incoherent optical vector matrix multiplier)을 구성하고 실험결과와 이론치를 비교하였다. 입력 벡터 및 매트릭스의 원소들은 양의 실수로만 국한시키고 입력 벡터는 LED배열로 나타내었으며 매트릭스는 마스크상에 면적변조방식으로 부호화하였다. 이 두 곱셈의 결과는 렌즈계를 통하여 포토 다이오우드 배열로 검출하였으며 하나의 채널로 출력신호를 관찰하기 위하여 애널로그 멀티플렉스를 사용하였다.
Kim, Su-Woon;Song, Seong-Ho;Kang, Min-Jae;Kim, Ho-Chan
전기전자학회논문지
/
제23권4호
/
pp.1353-1359
/
2019
It is presented in this paper that the static output feedback (SOF) pole-assignment problem of some linear time-invariant systems can be completely resolved by parametrization in real Grassmann space. For the real Grassmannian parametrization, the so-called Plucker matrix is utilized as a linear matrix formula formulated from the SOF variable's coefficients of a characteristic polynomial constrained in Grassmann space. It is found that the exact SOF pole assignability is determined by the linear independency of columns of Plucker sub-matrix and by full-rank of that sub-matrix. It is also presented that previous diverse pole-assignment methods and various computation algorithms of the real SOF gains for 2-input, 2-output, 4th order systems are unified in a deterministic way within this real Grassmannian parametrization method.
Matrix converter is direct power conversion system. Matrix converter has many merits that possible bidirectional power flow, input power factor own control and system without DC-link. But matrix converter has some demerits that need many switching devices and switching loss. This paper suggest optimal matrix converter control scheme for improvement for switching loss part. Proposed control scheme verified that 10% improvement in efficiency, input current's harmonic loss and output voltage's EMI improvement.
In this paper, the gain-scheduled control design proposed in the previous paper has been applied to a target tracking system. In such system, it is needed to attenuate disturbance effectively as long as control input satisfies the given constraint on its magnitude. The scheduled gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain and the scheduled gain control with constant Q matrix cases.
This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.
본 논문에서는 버틀러 매트릭스를 이용한 빔포밍 안테나를 설계 및 분석하였다. 제안한 빔포밍 안테나의 동작 주파수는 2.4 GHz의 ISM 대역이며, 빔포밍 안테나의 구성 요소는 1 × 4 배열 안테나 및 4 × 4 버틀러 매트릭스로 구성된다. 4 × 4 버틀러 매트릭스의 출력포트에 서로 다른 위상차를 갖는 신호가 출력되며, 신호는 1 × 4 배열 안테나의 각각의 입력포트에 공급된다. 4개의 입력포트를 갖는 빔포밍 안테나는 총 4개의 빔을 형성한다. 빔포밍 안테나의 방사패턴을 분석하기 위해 각각의 입력포트에 신호를 스위칭하여 공급하였으며, 입력포트 1 ~ 4에 대한 개별적인 분석을 진행하였다. 제안한 빔포밍 안테나는 각각의 입력포트에 따라 각각 -12°, 40°, -40°, 12° 방향에서 주 빔이 형성되었다.
This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.
본논문은 행렬비로 기미되는 다입.출력 연속시간 시스템에 대한 기준 모델형 적응제어에 관하여 고찰한다. 제어기는 monopoli - Narendra type 으로서 파라메타 적응칙에 시변리득행렬을 도입하였으며 가조정 제어기를 포함한 플랜트의 전달함수 행렬이 기준모델의 그것에 점차 따라가도록 한다. interactor 행렬에 대한 지식을 비롯한 약간의 가정하에서 단일 입.출력 시스템의 경우의 알고리즘이 적절하게 적용될 수 있음을 보인다. 적응칙의 수렴성은 안정도 이론을 이용하여 증명하며 전체 시스템의 안정성은 해석적인 고찰에 의해 보여 준다.
The multilayer expanson of single layer NN (Neural Network) was needed to solve the linear seperability problem as shown by the classic example using the XOR function. The EBP (Error Back Propagation ) learning rule is often used in multilayer Neural Networks, but it is not without its faults: 1)D.Rimmelhart expanded the Delta Rule but there is a problem in obtaining Ca from the linear combination of the Weight matrix N between the hidden layer and the output layer and H, wich is the result of another linear combination between the input pattern and the Weight matrix M between the input layer and the hidden layer. 2) Even if using the difference between Ca and Da to adjust the values of the Weight matrix N between the hidden layer and the output layer may be valid is correct, but using the same value to adjust the Weight matrixd M between the input layer and the hidden layer is wrong. Recognitron III was proposed to solve these faults. According to simulation results, since Recognitron III does not learn the three layer NN itself, but divides it into several single layer NNs and learns these with learning patterns, the learning time is 32.5 to 72.2 time faster than EBP NN one. The number of patterns learned in a EBP NN with n input and output cells and n+1 hidden cells are 2**n, but n in Recognitron III of the same size. [5] In the case of pattern generalization, however, EBP NN is less than Recognitron III.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.