The Transactions of the Korean Institute of Electrical Engineers C
/
v.52
no.7
/
pp.424-424
/
2003
Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.
International Journal of Advanced Culture Technology
/
v.9
no.3
/
pp.81-85
/
2021
The purpose of this paper is to measure the relative efficiency of the police agencies in Korea with data collected from 2018 to 2020, using data envelopment analysis (DEA), as put forward by Charnes et al., which is used to construct a scalar measure of efficiency for all police agencies. The results of this study can be used to assist police agencies in delivering better and more efficient services to the community. The analytical results based on DEA identify potentially weak and strong police agencies on policing performance, their efficient benchmarking, and the levels of clear-ups that would make inefficient police agencies efficient. We could suggest that higher levels of the police force are associated with higher performance efficiency against crimes. But, it is a little hard to say that higher levels of the police force can keep the local police agencies efficient without explaining the contribution of other input variables to criminal arrest and prevention. On the other hand, our analysis presents that differences in operating environments and socioeconomic factors do not have a significant influence on the efficiency of local police agencies. But, it is necessary to note that we need to examine the effect of environments and socioeconomic factors on crime to create the better-policing performance.
Journal of Korea Society of Digital Industry and Information Management
/
v.17
no.4
/
pp.161-175
/
2021
This study analyzed the efficiency and influence factors according to the main research institute type of R&D Program for the local community problem-solving. This study applied data envelopment analysis (DEA) method and Tobit regression analysis by using 20 institutions that participated in R&D Program. The results are summarized as follows. First, Analysis results according to the research institute type of R&D project, Efficient DMUs showed more regional innovation institutions than social economy enterprises. But regional innovation institutions were the lowest in the CCR and BCC model. However, efficiency dose not differ between regional innovation institutions and social economy enterprises. Second, as a result of the analysis relation between efficiency and allocation characteristics of R&D input, the participation of regional innovation organizations as participating organizations has a negative effect on efficiency. It was found that the higher the proportion of government subsidies and the higher the employment rate of the vulnerable, which is a social achievement, the positive effect on efficiency. The implication of this study is that the participation of social economy enterprises as the main R&D institution and government R&D support can provide social economy enterprises with opportunities to accumulate R&D capabilities and experience successful commercialization.
Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapts long short-term memory (LSTM), which demonstrates remarkable performance in time-series prediction. The combination of LSTM model input of meteorological features and activation functions have a significant impact on the performance therefore, the results from 5 combinations of input features and 4 activation functions are analyzed in 9 Automated Surface Observing System (ASOS) stations corresponding to cities/islands/mountains. The optimized LSTM model produces better performance within eight forecast hours than Local Data Assimilation and Prediction System (LDAPS) operated by Korean meteorological administration. Therefore, this study illustrates that this LSTM model can be usefully applied to very short-term weather forecasting, and further studies about CNN-LSTM model with 2-D spatial convolution neural network (CNN) coupled in LSTM are required for improvement.
The Stirling cryocoolers have been widely used for the cooling of the infrared detector(InSb, HgCdTe, and etc,) and HTS(High Temperature Superconductor) to the cryogenic temperature. The monobloc Stirling cryocoolers with the rotary compressor are applicable to the cooling device for the compact mobile thermal imaging system, because the cryocoolers have the compact structure and light weight. The typical performance factors of the Stirling cryocooler are the cool-down time, cooling capacity at the desired temperature (80 K), the electric input power and COP. The above performance factors depend on the operating conditions such as the charging pressure of the helium gas, the thermal environment and etc.. In this study, the effects of the thermal environment (temperature of 241, 293, and 333 K) on the performance of the cryocooler were investigated by experiments. The results show the effects of the temperature of the thermal environment on the cooling capacity and input power.
Kim, Dong-Min;Lee, Jun-Seo;Ryu, Byung-Cheol;Chung, Chan-Moon
Journal of the Korean Recycled Construction Resources Institute
/
v.8
no.1
/
pp.129-133
/
2020
The concentration of remaining formaldehyde contained in waste liquid emitted from the process of urea-formaldehyde microcapsule synthesis was analyzed by gas chromatography-mass spectrometry (GC-MS). Three factors that can affect on the reaction of formaldehyde were selected including pH, ammonium chloride input and temperature. The effect of these factors on the concentration of remaining formaldehyde was studied. When ammonium chloride input was 0.025g, microcapsules could not be obtained or core substance leaked out because of weak shell, and therefore this reaction condition would be inadequate. It was confirmed that the concentration of remaining formaldehyde could be minimized when the microencapsulation was conducted at 70℃ and pH 2.5 by using a ammonium chloride input of 0.050g. This study can make contribution to UF microencapsulation in safer working environment.
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.11-12
/
2002
Accidental overexposures by radiotherapy have gathered attention recently in Japan. The widely publicized accidents have occurred at the government official benefit society hospital and at the hospital affiliated to a medical school. The accident at the government official benefit society hospital occurred when one of two existing accelerators was renewed. A radiotherapy planning system was also introduced at that time. Then treatment planning for the old and the new linear accelerator was performed using the system. There were variations in wedge factors for the 30 degrees wedge filter between the old and the new linear accelerator. That is, the difference in the structure of the wedge filter (30 degrees) resulted in variations of the wedge factors between both accelerators. In order to keep strength, a lead board was backed to the lead wedge filter for the new linear accelerator, whereas the wedge filter for the old one was made of the iron. The X-ray attenuation of the iron wedge filter is smaller than that of the lead wedge filter. The basic beam data of the old linear accelerator, however, wasn't delivered properly between the user and the maker. Then, the accident took place because the same wedge factor was used for the old and the new linear accelerator. On the other hand, the accident which occurred at the university hospital was brought about by the input mistake in initialization of the computer system when a linear accelerator was introduced. The input mistake was found when the software of the system was updated. If the dose had been measured and confirmed adequately, the accidents could have been prevented in both cases.
Face the process yield rate improvements of motherboard, although general enterprises finish deployment goal of each functions by overall quality managements, through quality improvement methods, industry engineering methods, plan-do-check-act (PDCA) methods and other improvement solutions, but it is only can be improved partially and unable to enhance the yield rate of product to the target. It only can takes one step ahead to enhance the process yield rate of motherboard with six sigma ($6{\sigma}$) overall DMAIC process and tactics. This research aimed to use six sigma quality improvement tactics by DMAIC systematic procedure and tactics, and find the key factors that effect to the process yield rate of surface mount technology. It also identified the keys input and process and output index to satisfy customer requirements and internal process index. The results showed that the major effective factors by fishbone and process failure modes and effects analysis (PFMEA). If the index of input and output that can be quantified, the optimum parameter can be found through design of experiment to ensure that the process is stable. If the factor of input and output that cannot be quantified, we found out the effective countermeasure by Mind_Mapping, make sure whole processes can be controlled stably, to reach the high product quality and enhance the customer satisfaction.
Ha, Ji Young;Lee, Seung Hyun;Na, Myung Hwan;Kim, Deok Hyeon;Lee, Hye Lim;Lee, Yong Gyeon
Journal of Korean Society for Quality Management
/
v.49
no.2
/
pp.213-231
/
2021
Purpose: This study intends to provide decision-making information to improve efficiency by analyzing the management efficiency of smart greenhouse business entities and identifying factors that affect the efficiency based on input and output. Methods: The subjects of analysis were business entities for cultivating strawberries in smart greenhouses in Jeolla region (northern and southern Jeolla provinces), and the analysis focused on the management performance of the 2019-2020 crop period (year). Data Envelopment Analysis(DEA) was applied as an analysis method for efficiency analysis, Quantile Regression(QR) analysis was applied as a factor affecting the efficiency. Results: The reason for the efficiency gap between business entities was that there were many business entities that did not minimize the input cost at the current level of output, and the area where the variance among business entities was large was the fixed cost per 10a. In the results of the affecting factor analysis, it was found that the seed-seedlings cost, fertilizer cost, other material cost, and employment and labor cost had a negative (-) effect on the efficiency, and that the repair and maintenance cost had a positive (+) effect. Conclusion: Therefore, to achieve the efficiency of scale, it is necessary to reduce the input scale to an appropriate level. In the case of business entities with low efficiency by quartile, the seed-seedlings, fertilizer, and other material costs reduce expenditures, and repair maintenance costs can improve efficiency by increasing expenditures.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.246-246
/
2023
Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.