• Title/Summary/Keyword: input coefficient

Search Result 1,029, Processing Time 0.031 seconds

A Study on A Multi-Pulse Linear Predictive Filtering And Likelihood Ratio Test with Adaptive Threshold (멀티 펄스에 의한 선형 예측 필터링과 적응 임계값을 갖는 LRT의 연구)

  • Lee, Ki-Yong;Lee, Joo-Hun;Song, Iick-Ho;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • A fundamental assumption in conventional linear predictive coding (LPC) analysis procedure is that the input to an all-pole vocal tract filter is white process. In the case of periodic inputs, however, a pitch bias error is introduced into the conventional LP coefficient. Multi-pulse (MP) LP analysis can reduce this bias, provided that an estimate of the excitation is available. Since the prediction error of conventional LP analysis can be modeled as the sum of an MP excitation sequence and a random noise sequence, we can view extracting MP sequences from the prediction error as a classical detection and estimation problem. In this paper, we propose an algorithm in which the locations and amplitudes of the MP sequences are first obtained by applying a likelihood ratio test (LRT) to the prediction error, and LP coefficients free of pitch bias are then obtained from the MP sequences. To verify the performance enhancement, we iterate the above procedure with adaptive threshold at each step.

  • PDF

Development of Dynamic Balancing Techniques of a Rotor System Using Genetic Algorithm (유전자 알고리즘을 적용한 로터 시스템의 동적 밸런싱 기법 개발)

  • Kwon, Hyuck-Ju;Yu, Young-Hyun;Jung, Sung-Nam;Yun, Chul-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1162-1169
    • /
    • 2010
  • The dynamic balancing of a rotor system is needed to alleviate the imbalances originating from various sources encountered during blade manufacturing processes and environmental factors. This work aims at developing a comprehensive analysis system which consists of cumulative module of test D/B and selection of optimal control parameters. This system can be used for the dynamic balancing of helicopter rotors based on tracking results from the whirl tower test. For simplicity of the analysis, a linear relation is assumed between the balancing input parameters and the blade track responses leading to influence coefficients and thereby the rotor system identification is made. In addition, the balancing parameters of the individual blades are sought using the genetic algorithm and the effectiveness of the proposed method is demonstrated in comparison with the test results.

The Effect of the Fill Charge Ratio on the Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon (충전율의 변화가 밀폐형 2-상 열사이폰의 열전달 특성에 미치는 영향에 관한 연구)

  • Park, Yong-Joo;Hong, Sung-Eun;Kim, Chul-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1646-1654
    • /
    • 2002
  • A two-phase closed thermosyphon was one of the most effective devices in the removing heat because of its simple structure, thermal diode characteristics, wide operating temperature range and so on. In this study, a two-phase closed thermosyphon(working fluid PFC(C6F14), container copper(inner grooved surface)) was fabricated with a reservoir which can change the fill charge ratio. The experiments were performed in the range of 50~600W heat flow rate and 10~70% fill charge ratio. The results were compared with some correlations that were presented by Rohsenow and Immura et al. in the evaporator, by Nusselt, Gross and Uehara et al. in the condenser and by Cohen and Bayley, Wallis, Kutateladze and Faghri et al. in heat transfer limitation etc.. The heat transfer coefficient at the evaporator increased with the input power. However the effect of the fill charge ratio was nearly negligible. At the condenser, it showed an opposite trend to the evaporator and with increase of the fill charge ratio, showed some enhancement of heat transfer. The heat transport limitation was occurred by the dry-out limitation for small fill charge ratio(10%) and presented about 100W. For the case of large fill charge ratio(Ψ$\geq$40%), it was occurred by the flooding limitation at about 500W.

A Mathematical Model of Undertow in the Surf Zone (쇄파대(碎波帶)에서 undertow에 관한 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, Il Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.193-206
    • /
    • 1993
  • An analytical model of undertow is presented in the surf zone. Each term of the derived governing equation is evaluated by the ordering methods. Then the turbulent normal stresses and the streaming velocity terms are neglected. The driving force of undertow is derived from the wave profile which is approximated by the 4th order Chebyshev polynomials. The three types of vertical distribution of eddy viscosity are assumed and the coefficient of eddy viscosity is decided from the new boundary condition. So the input parameters for the calculation of undertow become very simple. The theoretical solutions of the present model are compared with the various experimental results. This model shows a good agreement with the experimental results in the case of mild slope and linear type eddy viscosity.

  • PDF

Estimation of Physical-Chemical Property and Environmental Fate of Benzoyl peroxide Using (Q)SAR

  • Kim, Mi-Kyoung;Kim, Su-Hyon;Heekyung Bae;Sanghwan Song;Hyunju Koo;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik;Lee, Moon-Soon
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.154-154
    • /
    • 2002
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,375 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of seven chemicals of which human health and environmental risks are being assessed by National Institute of Environmental Research (NIER) under the frame of OECD SIDS Program. In this study, Quantitative Structure-Activity Relationships (QSAR) is used for getting adequate information on the physical-chemical property and the environmental fate of this chemical. For the assessment of benzoyl peroxide, models such as MPBPWIN for vapor pressure, KOWWIN for octanol/water partition coefficient, HENRYWIN for Henry's Law constant, AOPWIN for photolysis and BCFWN for bioconcentration factor (BCF) were used. These (Q)SAR model programmes were worked by using the SHILES (Simplified Molecular Input Line Entry System) notations. The physical-chemical properties and the environmental fate of benzoyl peroxide were estimated as followed : vapor pressure =0.00929 Pa, Log Kow = 3.43, Henry's Law constant = 0.00000354 atm-㎥/mole at 25 $^{\circ}C$, the half-life of photodegradation = 3 days, bioconcentration factor (BCF) = 92

  • PDF

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.

An Artificial Intelligence Method for the Prediction of Near- and Off-Shore Fish Catch Using Satellite and Numerical Model Data

  • Yoon, You-Jeong;Cho, Subin;Kim, Seoyeon;Kim, Nari;Lee, Soo-Jin;Ahn, Jihye;Lee, Eunjeong;Joh, Seongeok;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.41-53
    • /
    • 2020
  • The production of near- and off-shore fisheries in South Korea is decreasing due to rapid changes in the fishing environment, particularly including higher sea temperature in recent years. To improve the competitiveness of the fisheries, it is necessary to provide fish catch information that changes spatiotemporally according to the sea state. In this study, artificial intelligence models that predict the CPUE (catch per unit effort) of mackerel, anchovies, and squid (Todarodes pacificus), which are three major fish species in the near- and off-shore areas of South Korea, on a 15-km grid and daily basis were developed. The models were trained and validated using the sea surface temperature, rainfall, relative humidity, pressure,sea surface wind velocity, significant wave height, and salinity as input data, and the fish catch statistics of Suhyup (National Federation of Fisheries Cooperatives) as observed data. The 10-fold blind test results showed that the developed artificial intelligence models exhibited accuracy with a corresponding correlation coefficient of 0.86. It is expected that the fish catch models can be actually operated with high accuracy under various sea conditions if high-quality large-volume data are available.

Analysis of Tidal Flow using the Frequency Domain Finite Element Method (II) (有限要素法을 이용한 海水流動解析 (II))

  • Kwun, Soon-Kuk;Koh, Deuk-Koo;Cho, Kuk-Kwang;Kim, Joon-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • The TIDE, finite element model for the simulation of tidal flow in shallow sea was tested for its applicability at the Saemangeum area. Several pre and post processors were developed to facilitate handling of the complicated and large amount of input and output data for the model developed. Also an operation scheme to run the model and the processors were established. As a result of calibration test using the observed data collected at 9 points within the region, linearlized friction coefficients were adjusted to be ranged 0.0027~0.0072, and water depths below the mean sea level at every nodes were changed to be increased generally by 1 meter. Comparisons of tidal velocities between the observed and the simulated for the 5 stations were made and obtained the result that the average relative error between simulated and observed tidal velocities was 11% for the maximum velocities and 22% for the minimum, and the absolute errors were less than 0.2m/sec. Also it was found that the average R.M.S. error between the velocities of observed and simulated was 0.119 m/sec and the average correlation coefficient was 0.70 showing close agreement. Another comparison test was done to show the result that R.M.S. error between the simulated and the observed tidal elevations at the 4 stations was 0.476m in average and the correlation coefficients were ranged 0.96~0.99. Though the simulated tidal circulation pattern in the region was well agreed with the observed, the simulated tidal velocities and elevations for specific points showed some errors with the observed. It was thought that the errors mainly due to the characteristics of TIDE Model which was developed to solve only with the linearized scheme. Finally it was concluded that, to improve the simulation results by the model, a new attempt to develop a fully nonlinear model as well as further calibration and the more reasonable generation of finite element grid would be needed.

  • PDF

Predicting the Greenhouse Air Humidity Using Artificial Neural Network Model Based on Principal Components Analysis (PCA에 기반을 둔 인공신경회로망을 이용한 온실의 습도 예측)

  • Owolabi, Abdulhameed B.;Lee, Jong W;Jayasekara, Shanika N.;Lee, Hyun W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity inside an experimental greenhouse located in Daegu (latitude $35.53^{\circ}N$, longitude $128.36^{\circ}E$, and altitude 48 m), South Korea. The weather parameters, air temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data for the ALYUDA forecaster software of the ANN model. The Nash-Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which signifies that the model has a very high accuracy and can be used for predictions based on the computed $R^2$ and NSE values for the training and validation samples.

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.