The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.6C
/
pp.632-639
/
2002
To reduce the area and power consumption in constant coefficient multiplications, the constant coefficient can be encoded using canonic signed digit(CSD) representation. When the partial product terms are added depending on the nonzero bit(1 or -1) positions in the CSD-encoded multiplier, all sign bits are properly extended before the addition takes place. In this paper, to reduce the overhead due to sign extension, a new method is proposed based on the fact that carry propagation in the sign extension part can be controlled such that a desired input bit can be propagated as a carry. Also, a fixed-width multiplier design method suitable for CSD multiplication is proposed. As an application, 43-tap filbert transformer for SSB/BPSK-DS/CDMA is implemented. It is shown that, about 16∼28% adders can be saved by the proposed method compared with the conventional methods.
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.5
/
pp.744-752
/
2012
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.14
no.1
/
pp.19-33
/
2002
A numerical method to efficiently secure necessary design informations of the hydraulic characteristics of rubble mound breakwater was attempted here. The method combines the exterior wave field with the interior wave field which is formulated incorporating porous media flow inside the breakwaters. An approximate method based on the long wave assumption was used for the exterior wave field while a boundary element method was used for the interior wave field. A hydraulic experiment was also performed to verify the validity of the numerical analysis. The numerical results were compared with experimental data and results from existing formulae. They generally agreed in both reflection and transmission coefficients. The calculated pore pressures also showed a similar pattern with experimental data, even if they gave some significant differences in their values fur some cases. The main cause of such differences can be attributed to the strongly nonlinear wave field occurring on the frontal slope of the breakwater. The direct input of dynamic pressures(measured from hydraulic experiment) into the numerical method was suggested as a promising method to enhance the predictability of pore pressures.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.12
/
pp.1772-1781
/
2017
In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.1
no.3
/
pp.97-103
/
2008
In this paper, $256{\times}256$ input image is classified into a validity block and an edge block of $8{\times}8$ block for image compression. DCT(Discrete Cosine Transform) is executed only for the DC coefficient that is validity coefficients for a validity block. Predict the position where a quantization coefficient becomes 0 for an edge block, I propose new algorithm to execute DCT in the reduced region. Not only this algorithm that I proposed reduces computational complexity of FDCT(Forward DCT) and IDCT(Inverse DCT) and decreases encoding time and decoding time. I let compressibility increase by accomplishing other stability verticality zigzag scan by the block size that was classified for each block at the time of huffman encoding each. In addition, the algorithm that I suggested reduces Run-Length by accomplishing the level verticality zigzag scan that is good for a classified block characteristic and, I offer the compressibility that improved thereby.
Jang, Taeung;Kim, Hyeonyong;Kim, Byeongman;Chung, Hae
KIISE Transactions on Computing Practices
/
v.21
no.8
/
pp.531-536
/
2015
The speech recognition is an active research area in the human computer interface (HCI). The objective of this study is to control digital devices with voices. In addition, the mouse is used as a computer peripheral tool which is widely used and provided in graphical user interface (GUI) computing environments. In this paper, we propose a method of controlling the mouse with the real-time speech recognition function of a smartphone. The processing steps include extracting the core voice signal after receiving a proper length voice input with real time, to perform the quantization by using the learned code book after feature extracting with mel frequency cepstral coefficient (MFCC), and to finally recognize the corresponding vowel using hidden markov model (HMM). In addition a virtual mouse is operated by mapping each vowel to the mouse command. Finally, we show the various mouse operations on the desktop PC display with the implemented smartphone application.
The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.
In high-resolution satellite image classification, when the color values of pixels belonging to one class are different, such as buildings with various colors, it is difficult to determine the color information representing the class. In this paper, to solve the problem of determining the representative color information of a class, we propose a method to divide the color channel of HSV (Hue Saturation Value) and perform object-based classification. To this end, after transforming the input image of the RGB color space into the components of the HSV color space, the Hue component is divided into subchannels at regular intervals. The minimum distance-based image classification is performed for each hue subchannel, and the classification result is combined with the image segmentation result. As a result of applying the proposed method to KOMPSAT-3A imagery, the overall accuracy was 84.97% and the kappa coefficient was 77.56%, and the classification accuracy was improved by more than 10% compared to a commercial software.
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.79-84
/
2021
A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.
Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
Structural Engineering and Mechanics
/
v.86
no.5
/
pp.589-605
/
2023
This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.