References
- https://www.vanguardngr.com/2017/11/nigeria-signs-pact-russia-nuclearenergy/.
- E. Nnuka, C. Enejor, Characterisation of Nahuta clay for industrial and commercial applications, Niger. J. Eng. Mater. 2 (2001) 9-12.
- E.J. Hall, Radiobiology for the Radiologist, fifth ed., Lippincott Williams & Wilkins, New Yoke, Philadephia, 2000.
- J.E. Turner, Atoms, Radiation and Radiation Protection, third ed., John Wiley and Sons, New York, 2007.
- G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley and Sons, New York, 2000.
- J.A. Omotoyinbo, Working properties of some selected refractory clay deposits in southwestern Nigeria, J. Miner. Mater. Charact. Eng. 7 (2008) 233-245.
- O.S. Adegoke, Guide to the Non-metal Mineral Industrial Potential of Nigeria, Raw Materials Research and Development Council, Kaduna, Nigeria, 1980, pp. 110-120. RMRDC.
- R.D. Evans, The Atom Nucleus, in: THM (Ed.), McGraw-Hill, New York, 1995.
- E.P. Miller, Radiation Attenuation Characteristics of Structural Concrete, OAK Ridge National Laboratory, Tennessee, 1958.
- E. Yilmaz, et al., Gamma ray and neutron-shielding properties of some concrete materials, Ann. Nucl. Energy 38 (2011) 2204-2212. https://doi.org/10.1016/j.anucene.2011.06.011
- N.A. Alallak, Factors affecting gamma ray transmission, Jordan J. Phys. 5 (2012) 77-88.
- Oak ridge national laboratory, Early test facilities and analytic methods. Special Session Radiation Protection and Shielding, US, Department of energy, Chicago, 1992, pp. 1-8.
- H.M. Soylu, et al., Gamma radiation shielding efficiency of a new lead-free composite material, J. Radioanal. Nucl. Chem. 305 (2015) 529-534. https://doi.org/10.1007/s10967-015-4051-3
- I. Akkurt, et al., Chemical corrosion on gamma-ray attenuation properties of barite concrete, J. Saudi Chem. Soc. (2012) 199-202.
- S.M. Harjinder, Experimental investigation of clay fly-ash bricks for gammaray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236. https://doi.org/10.1016/j.net.2016.04.001
- M.E. Medhat, Gamma-ray attenuation coefficients of some building materials in Egypt, Ann. Nucl. Energy 36 (2009) 849-852. https://doi.org/10.1016/j.anucene.2009.02.006
- B. Oto, A. Gur, Gamma-ray shielding of concretes including magnetite in different rate, Int. J. Phys. Sci. 8 (2013) 310-314.
- B. Oto, et al., Photon attenuation properties of some concretes containing barite and colemanite in different rates, Ann. Nucl. Energy 51 (2013) 120-124. https://doi.org/10.1016/j.anucene.2012.06.033
- S.O. Shamsan, et al., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
- M.I. Sayyed, et al., Determination of nuclear radiation shielding properties of some tellurite glass using MCNP5 code, Radiat. Phys. Chem. 150 (2018) 1-8. https://doi.org/10.1016/j.radphyschem.2018.04.014
- A.H. Taqi, H.J. Khalil, Experimental and theoretical investigation of gamma attenuation of building materials, J. Nucl. Particle Phys. 7 (1) (2017) 6-13.
- M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for borotellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem. 130 (2017) 335-342. https://doi.org/10.1016/j.radphyschem.2016.09.019
- M.I. Sayyed, et al., Investigation of radiation shielding properties for MeOPbCl2- TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses, Radiat. Phys. Chem. 144 (2018) 419-425. https://doi.org/10.1016/j.radphyschem.2017.10.005
- M.I. Sayyed, S.I. Qashou, Z.Y. Khattari, Radiation shielding competence of newly developed TeO2-WO3 glasses, J. Alloys Comp. 696 (2017) 632-638. https://doi.org/10.1016/j.jallcom.2016.11.160
- H.O. Tekin, et al., Photon shielding characterizations of bismuth modified borate-silicate-tellurite glasses using MCNPX Monte Carlo code, J. Mater. Chem. Phys. 211 (2018) 9-16. https://doi.org/10.1016/j.matchemphys.2018.02.009
- M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Crystalline Solids 487 (2018) 53-59. https://doi.org/10.1016/j.jnoncrysol.2018.02.014
- M.G. Dong, et al., Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. Non-Crystalline Solids 468 (2017) 12-16. https://doi.org/10.1016/j.jnoncrysol.2017.04.018
- M. Kurudirek, et al., Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Non-Crystalline Solids 745 (2017) 355-364.
- D. McAlister, Gamma Ray Attenuation Properties of Common Shielding Materials, University Lane Lisle, USA, 2012.
- M.E. Medhat, Application of gamma-ray transmission method for study, Ann. Nucl. Energy (2012) 53-59.
- S.A. Agbalajobi, Analysis on some physical and chemical properties of Oreke dolomite deposit, J. Miner. Mater. Charact. Eng. 4 (2013) 33-38.
- L.E. Gerward, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 653-654 (2004).
- C.R. Hammond, The elements, in: Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton (FL, US), 2004, p. 4-1. ISBN 0-8493-0485-7.
- I.O. Olarinoye, Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies, Res. J. Chem. Sci. (2011) 64-69.
- I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
- J.R. Lamarsh, Introduction to Nuclear Engineering, Prentice Hall, New Jersey, 2001.
Cited by
- Feasibility of clay-shielding material for low-energy photons (Gamma/X) vol.51, pp.6, 2019, https://doi.org/10.1016/j.net.2019.04.020
- New transparent rare earth glasses for radiation protection applications vol.125, pp.12, 2018, https://doi.org/10.1007/s00339-019-3077-8
- Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2-ZnO glass systems vol.125, pp.12, 2018, https://doi.org/10.1007/s00339-019-3129-0
- Study of radiation attenuation ability of clay and cement mixture with added eggshell vol.1497, pp.None, 2020, https://doi.org/10.1088/1742-6596/1497/1/012010
- Study on the shielding materials for low-energy gamma sources vol.785, pp.None, 2018, https://doi.org/10.1088/1757-899x/785/1/012007
- The influence of clay addition in fly ash concrete mixture for nuclear shielding vol.785, pp.None, 2020, https://doi.org/10.1088/1757-899x/785/1/012008
- SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications vol.9, pp.3, 2020, https://doi.org/10.1680/jemmr.20.00150
- Radioactive rays shielding film: coating on amorphous glass vol.52, pp.10, 2020, https://doi.org/10.1007/s11082-020-02537-9
- Evaluation of the gamma and neutron shielding properties of $$64\hbox {TeO}_2+15\hbox {ZnO}+(20-x)\hbox {CdO}+x\hbox {BaO}+1\mathrm{V}_2\hbox {O}_5$$ glass system using Geant4 simulation and Phy-X dat vol.94, pp.1, 2018, https://doi.org/10.1007/s12043-020-01972-3
- Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation vol.8, pp.3, 2021, https://doi.org/10.1088/2053-1591/abeb4e
- An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations vol.53, pp.6, 2021, https://doi.org/10.1016/j.net.2020.12.023
- Characterization of the radiation shielding properties of fired lead sample for X-ray shielding applications vol.137, pp.None, 2018, https://doi.org/10.1016/j.pnucene.2021.103765
- Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability vol.14, pp.16, 2018, https://doi.org/10.3390/ma14164697
- Gamma rays and thermal neutron attenuation studies of special composite mixes for using in different applications vol.186, pp.None, 2018, https://doi.org/10.1016/j.radphyschem.2021.109541
- Radiation shielding and mechanical properties of Bi2O3-Na2O-TiO2-ZnO-TeO2 glass system vol.186, pp.None, 2018, https://doi.org/10.1016/j.radphyschem.2021.109556
- Fabrication and Characterization of Clay-Polyethylene Composite Opted for Shielding of Ionizing Radiation vol.11, pp.9, 2018, https://doi.org/10.3390/cryst11091068
- Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO) vol.11, pp.22, 2018, https://doi.org/10.3390/app112210904
- Investigation of Photon Radiation Attenuation Capability of Different Clay Materials vol.14, pp.21, 2018, https://doi.org/10.3390/ma14216702
- Enhancement of Ceramics Based Red-Clay by Bulk and Nano Metal Oxides for Photon Shielding Features vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247878