• 제목/요약/키워드: inorganic pollutants

검색결과 98건 처리시간 0.023초

Interaction of industrial effluents and bentonite: a comparative study of their physico-chemical and geotechnical characteristics

  • Murugaiyan, V.;Saravanane, R.;Sundararajan, T.
    • Geomechanics and Engineering
    • /
    • 제1권4호
    • /
    • pp.291-306
    • /
    • 2009
  • One-dimensional soil-column studies were carried out to understand the interaction of three industrial effluents namely amino acid ('highly acidic'), surfactant ('highly organic') and pharmaceutical ('organic and toxic') on the physicochemical behavior, index properties and shear strength of bentonite due to artificial contamination extending to nearly 300 days. Changes in inorganic and organic pollutants present in the effluents due to the interaction of the above effluents and soil were assessed to understand the physico-chemical behaviour. Batch and continuous modes of operation, 8 hrs and 16 hrs Hydraulic Retention Time [HRT] and 25%, 50% concentrations of effluents, were the parameters considered. Amino acid, surfactant and pharmaceutical effluents have shown a high variation in pH (7 to 8) after artificial contamination on bentonite that is their original characteristics of the above effluents have been completely reversed. Further, it is found that the shear strength of bentonite has reduced by about 20%, and with respect to liquid limit and plastic limit shows an increasing trend with time within the period of contamination.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

마산만(馬山灣)의 환경오염(環境汚染) 평가(評價)를 위한 야외(野外) 생물(生物) 오염(汚染) 시험(試驗) 연구(硏究) (Field Bioassays On Shellfish To Assess Environmental Pollution Levels Of The Masan Bay)

  • 박주석
    • 한국해양학회지
    • /
    • 제14권1호
    • /
    • pp.15-25
    • /
    • 1979
  • A study on field bioassay test using four species of commercially important shellfish was carried out to assess the effect of pollutants and determine the extent of marine environmental pollution of the Masan Bay from 9 to 15 August 1978. Water quality analysis and planktological examination of sea water were made during the experiment and the examination gave the following results. The water temperature was so high at 31.7$^{\circ}C$ in maximum and rather subject to change on weather condition of the land than on the effect of the water mass from outer bay. The range of DO,COD and SS at the stations were 0.3-7.08cc/l, 0.07-3.31ppm and 5.5-117ppm, respectively with the high values of COD and SS at the stations 7 and 1. The concentrations of the dissolved inorganic nitrogen in sea water, NH$\sub$4/-N, NO$\sub$2/-N, NO$\sub$3/-N, and PO$\sub$4/-P were 18.90-99.80, 2.48- 19.60, 13.00-39.00 and 1.04-14.0$\mu\textrm{g}$ at/l, respectively with decrease of their values in the outer part of the Bay. The high values mentioned above were caused by the sewage and industrial activities. The effects of organic waste are increased oxygen demand, nutrient concentration, turbidity and a higher input of pathogens, leading to structural changes in the marine ecosystems and to a considerable hazard to public health. The percentage composition of phytoplankton standing crop between diatom and dinoflagellate was characterized by making a difference between the two groups in respect of location: a decrease of diatom and a increase of dinoflagellate in numerical abundance toward inner part from outer part of the bay. Namely phytoplankton organisms were composed of 80% of diatom and 20% of dinoflagellate in outer bay, on the contrary, only 4% of diatom and 96% of dinoflagellate occupied by 94% of prorocentrum micans known as tolerant species to polluted reaas in the inner bay. On the occurrence and composition of zooplankton, there are two significant communities in the bay:one is characterized by the predominance of Oithona nana and the other by Favella sp They were composed of a range from 84% to 90% of the total organisms and monotonously constituted of themselves only at most inner station 3 even small numbers. From the results mentioned above, Oithona nana, Favella and prorocentrum micans recommed themselves as valuable indicators for judging the extent of the marine pollution.During the period of the biossays Mytilus edulis showed the highest mortality and Tapes japonica the lowest one between the four test species. The highest death rate by stations was found at most inner stations 3'and 4near Masan Free Export Zone with the most sensitive response and the lowest one occured at outer station 13 where no death specimen of oyster and arkshell was found during the whole test period.As for mussel,85 percent death rate appeared after 72 hours and 100percent rate after 120hours at station 4. It was found that the significant high mortality of the test shellfish mentioned above was caused by severe pollution with mainly organic pollutants from domestic sewage and industrial wastes from the results of too much higher concentrations of dissolved inorganic nitrogen especially ammonia-N,COD,SS and lack of dissolved oxygen,and furthermore occurrence and abundance composition of Prorcentrum,Favella and Oithona nana by stations, valuable indicator species of coastal pollution by orgnic and boilogical pollutants.

  • PDF

High Loading for Air Pollution in the Byunsan Peninsula of Korea by an Interplay of the Saemangeum Project and Winter Monsoon

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권3호
    • /
    • pp.234-243
    • /
    • 2012
  • The wintertime high loading for atmospheric pollutants is certainly expected in the Byunsan Peninsula of Korea because of a great-scale reclamation project having construction of 33 km tidal sea dike impounding an area of over 40,000 ha and long-range transport. The goal of this study is to trace the origin of this wintertime burden for ambient particulate matter (hereafter called "PM") in the Byunsan Peninsula of Korea. The size-segregated (i.e., cutoff size from 0.01 ${\mu}m$ to 4.7 ${\mu}m$) PM sampling was conducted at a ground-based site of Byunsan Peninsula located in the west coast of Korean Peninsula during the height of dike constructing. Data archived in this study are the mass concentrations of ionic, elemental, and carbonic components in size-fractioned PM. The elemental mass of individual submicrometer particles was also analyzed. The sum of 5-source (i.e., elemental carbon, organic materials, inorganic secondary pollutants, crustal matter, and sea-salts) concentrations shows the bimodal distribution (major and minor peaks formed around $D_p$, 0.65 ${\mu}m$ and $D_p$, 4.7 ${\mu}m$, respectively) by border with 0.19 ${\mu}m$ of cutoff size. The concentrations of EC in $PM_{1.1-0.01}$ in winter and spring times were 4.62 ${\mu}g\;m^{-3}$ and 3.74 ${\mu}g\;m^{-3}$, respectively. Elemental masses of submicron individual particles are classified into two groups, i.e., the major elements (Cl, Al, Si, S, and P) and the minor trace elements. Cluster analysis differentiated the elements in submicron individual particles into 4-cluster. Among them, three clusters are in agreement with the major (Al, Si, S, and P), minor (Fe, Ca, and K), and trace compositions of coal burning. Meanwhile, Cl classified as an independent cluster has different source profile which was mainly due to the Saemangeum seawall project. Some highly toxic elements (e.g., Cr, Mn, and As (and/or Pb)) were also detected in some part of submicron individual PM. As a consequence, the combination of the Saemangeum project and winter monsoon played a considerable part in the double aggravation of wintertime air pollution in the Byunsan Peninsular.

적니를 이용한 무기응집제의 개발 및 응집성능 평가 (Development of the Inorganic Coagulants Using Red Mud and Evaluation of Its Coagulation Performance)

  • 이재록;황인국;배재흠
    • 청정기술
    • /
    • 제8권2호
    • /
    • pp.85-92
    • /
    • 2002
  • 적니는 보오크싸이트로부터 수산화알루미늄/알루미나를 제조하는 공정에서 발생되는 부산물이다. 본 연구에서는 적니 10g을 100ml의 5M $H_2SO_4$$85^{\circ}C$에서 반응시키거나 100ml의 9 M HCl과 $25^{\circ}C$에서 반응시켜 무기응집제인 적니응집제를 제조하였다. 이렇게 제조한 적니응집제의 응집성능은 실제폐수에 투입량을 변화시켜 투입한 후 여러 pH 값에 대하여 오염물질 제거효율로써 조사하였고 시판용 무기응집제($FeCl_3$)의 제거효율과도 비교하였다. 생활하수(탁도, 인)와 도금폐수(탁도, $Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Cr^{3+}$)의 실제폐수를 처리한 결과 적니응집제의 응집성능은 우수하였다. 그리고 적니응집제를 이용한 석유화학폐수중의 COD를 처리한 결과, 제거효율은 다소 낮았으나 시판용 무기응집제보다는 우수하였으며 응집보조제로서 양이온 고분자응집제 첨가시 가장 효과적인 것으로 확인되었다.

  • PDF

회전광촉매 시스템에 의한 폐수처리 (Wastewater Treatment by using a Rotating Photocatalitic Oxidation Disk System)

  • 정호진
    • 대한토목학회논문집
    • /
    • 제29권5B호
    • /
    • pp.497-502
    • /
    • 2009
  • 광촉매에 의한 수처리 방법은 수중에서 오염물질을 직접분해 처리하며 난분해성 유기물 또는 무기물의 분해가 용이하다. 특히 2차 오염물질의 생성이 거의 없는 것이 가장 큰 장점이라 할 수 있다. 하지만 광촉매 형태에 따라 여러 문제가 발생한다. 회전 광촉매 형태는 기존의 문제를 최소화시키고 회전원판법을 적용하여 고도산화처리가 가능하다. 회전광촉매 반응기의 적용을 위해서는 여러 가지 설계와 운전인자 및 특성에 대한 고찰이 필요하다. 본 연구에서는 회전 광촉매를 $TiO_2$ 고정화 작업으로 회전원판법에 적합하게 제작하였다. 이를 이용하여 회전 광촉매 반응에 의한 폐수처리를 수행하기 위한 운전인자들을 도출하였다. 회전 광촉매 $TiO_2$ 함량은 최대 70%가 한계로 나타났다. $TiO_2$ 함유량이 증가할수록 처리효율도 지속적으로 증가되고 있다. 적절한 회전 광촉매는 R4로 $TiO_2$ 함유량 36.8% 이다. 자외선 세기가 증가 할수록 TCODcr의 분해효과는 지속적으로 증가 된다. 다만 적절한 광원의 세기는 경제성을 고려해서 판단하여야 한다. 회전 광촉매의 회전속도가 증가할수록 처리효율은 향상된다. UV lamp를 반응조에 침지시키지 않을 때 회전 광촉매 수심변화는 수심이 50%, 30%, 10%, 70%, 100% 순으로 처리효율이 높게 나왔다. 본 실험을 바탕으로 태양광에서도 유기물을 처리할 수 있는 시스템을 개발에 바탕이 될 것이라 판단한다.

폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구 (Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation)

  • 원민희;조우리;장진만;이재영
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.272-278
    • /
    • 2023
  • 흡착을 이용한 오염물질 정화 방법에 많은 관심이 집중되고 있으며, 최근에는 바이오차를 이용하여 유기 및 무기오염물질 제거에도 이용할 수 있다는 연구가 진행되고 있다. 특히 폐자원 바이오매스로 폐목재는 바이오매스 재활용 방안이 필요한 상황으로 폐목재를 이용하여 생성된 바이오차를 흡착용량을 증가하기 위한 방법이 필요하다. 저온고압을 이용하여 에너지 소비가 낮고 수분 제거 전처리가 필요없는 열수가압탄화(Hydrothermal Carbonization, HTC)를 이용하여 탄화하여 바이오차를 생성하고, KOH, NaOH, ZnCl2 약품을 이용한 화학적 활성화법으로 생성된 바이오차를 약품별 활성화에 따른 요오드 흡착능, 비표면적, 세공크기, 세공부피, 세공분포 및 SEM을 분석하여 흡착특성을 파악하였다. HTC 300℃, 4 hr에서 생성된 바이오차를 KOH, NaOH, ZnCl2 약품별로 활성화로 생성된 바이오차 중 요오드흡착능이 높은 바이오차를 선정하여 비표면적, 세공부피, 세공크기 및 세공분포를 분석한 결과, 비표면적은 774~1.387 m2/g으로 활성탄과 같은 높은 비표면적을 나타냈으며, 평균세공크기 21~24 Å 범위의 미세공이 형성되었음을 확인하였다. 또한 SEM 관찰한 결과 활성화에 따라 표면이 일정한 형태의 균일한 세공이 발달되고 세공의 수가 증가하는 것을 확인할 수 있었다.

생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측 (Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay)

  • 권철휘;강훈;조광우;맹준호;장규상;이승용;서정빈
    • 해양환경안전학회지
    • /
    • 제15권2호
    • /
    • pp.91-98
    • /
    • 2009
  • 아산만 해역으로 방류수가 배출될 경우, 생태-유체역학모델을 이용하여 아산만 해역의 장기 수질변화를 예측하였다. 생태-유체역학 모델은 해수유동 시뮬레이션을 위한 다층모델과 수질시뮬레이션을 위한 생태계모델로 구성되어 있다. 생태-유체역학모델을 이용하여 아산만해역의 장기 수질을 예측한 결과, 5개 정점에서 화학적산소요구량, 용존무기질소 및 용존무기인의 농도분포는 현재 계산결과에서 6개월 동안 증가하였다. 수치실험 수행시간 1년에서 2년 사이에서는 화학적 산소요구랑, 용존무기질소, 용존무기인의 농도분포는 6개월 동안 증가한 농도분포가 차츰 감소하는 경향을 보였으며, 3년에서 10년 사이에서는 일정한 농도분포를 보였다. 화학적 산소요구량, 용존무기질소 및 용존무기인의 농도는 $11{\sim}67%$, $10{\sim}67%$ 및 0.57%의 범위로 증가하였다. 10년 동안의 수치 실험 결과 화학적산소요구량과 용존무기질소의 변화 폭이 크게 나타났으며 이는 하수처리장의 방류수 중 이 두 오염부하량이 많은 양을 차지하고 있기 때문이다. 아산만 연안해역에서 화학적산소요구량, 총질소, 총인의 농도는 해역수질환경기준 II등급으로 조사되었으나, 하수처리장의 방류수가 배출될 경우 사업지구 인근의 아산만 방조제 부근에서는 해역수질환경기준 III등급으로 나타났다.

  • PDF

고현천 및 유입지류의 수질오염 특성의 시·공간적 평가 (Temporal and Spatial Evaluation of Water Pollution Characteristics in Gohyeon Stream and Its Tributaries)

  • 김성재
    • 한국환경농학회지
    • /
    • 제31권3호
    • /
    • pp.235-247
    • /
    • 2012
  • BACKGROUND: Gohyeon Stream is the municipal eco-stream of 7.1km in total length which flows through the downtown area of Gohyeon in Geoje city, rising from the watershed of Mundong Water Fall. Gohyeon district in Geoje city has been a rapid growing area centering in Geoje city and then experienced an rapid increase in population. Large amounts of sewage pollutants have been spewed into Gohyeon Stream from its tributaries, due to the lack of sewer system. Gohyeon Stream is laced with unhealthy levels of fecal coliform (FC). Restoration of water quality in Gohyeon Stream is no less inevitable in behalf of its ecosystem and the citizen. In this study, the water quality of Gohyeon Stream and its tributaries was examined temporally and spatially, and their relationships were comparatively analyzed to give useful basic data applying to a restoration project of the water quality of Gohyeon Stream. METHODS AND RESULTS: The samples ware taken at 20 points in Gohyeon Stream and 19 points in its tributaries during the rainy and dry seasons, respectively, and examined on the parameters of pH, temperature, salinity, dissolved oxygen (DO), suspended solid (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN; $NH_3$-N, $NO_3$-N, $NO_2$-N), disolved inorganic phosphorus (DIP; $PO_4$-P) and FC. The data were analyzed using a comparative analysis and Pearson's correlation analysis among the parameters. During the rainy season, the concentration of SS was high in the upper region of Gohyeon Stream, and the concentrations of COD, DIN and DIP were low in the upper region and high in the middle and lower regions. During the dry season, the concentration of SS was low and the concentrations of COD, DIN, DIP and FC were high in all regions. The Pearson's correlation analyses showed that the relationships between DO and FC, COD and DIP, and DIN and FC during the rainy season as well as between DO and DIN, SS and FC, COD and DIP, and DIN and DIP during the dry season were significant. CONCLUSION: During the rainy season, the upper region of Gohyeon Stream flowed the high level of SS, the middle region the high level of nutrients due to an agricultural run-off, and the lower region the high level of nutrients due to a sewage inflow. During the dry season, the water quality of Gohyeon Stream was directly and sensitively influenced on the inflow of sewage from the tributaries.