DOI QR코드

DOI QR Code

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien (Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University) ;
  • Mubarak, N.M. (Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University) ;
  • Yee, Min Juey (Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University) ;
  • Yon, Lau Sie (Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University) ;
  • Bing, Chua Han (Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University) ;
  • Khalid, Mohammad (Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University) ;
  • Abdullah, E.C. (Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM))
  • Received : 2018.04.02
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Keywords

References

  1. L. Schweitzer, J. Noblet, Chapter 3.6 - Water Contamination and Pollution, Elsevier, 2018, pp. 261.
  2. A. Asfaram, M. Ghaedi, K. Dashtian, G.R. Ghezelbash, ACS Sustain. Chem. Eng. 6 (2018) 4549. https://doi.org/10.1021/acssuschemeng.7b03205
  3. D. Harikishore Kumar Reddy, Water Pollution Control Technologies A2 - Abraham, Martin A, Elsevier, Oxford, 2017, pp. 3.
  4. X. Ren, G. Zeng, L. Tang, J. Wang, J. Wan, Y. Liu, J. Yu, H. Yi, S. Ye, R. Deng, Sci. Total Environ. 610-611 (2018) 1154. https://doi.org/10.1016/j.scitotenv.2017.08.089
  5. X. Ren, G. Zeng, L. Tang, J. Wang, J. Wan, J. Wang, Y. Deng, Y. Liu, B. Peng, Waste Manage. 72 (2018) 138. https://doi.org/10.1016/j.wasman.2017.11.032
  6. C. Berberidou, V. Kitsiou, D.A. Lambropoulou, A. Antoniadis, E. Ntonou, G.C. Zalidis, I. Poulios, J. Environ. Manage. 195 (2017) 133. https://doi.org/10.1016/j.jenvman.2016.06.010
  7. W. Ding, S. Cheng, L. Yu, H. Huang, Chemosphere 182 (2017) 567. https://doi.org/10.1016/j.chemosphere.2017.05.006
  8. E. Rott, R. Minke, H. Steinmetz, J. Water Process Eng. 17 (2017) 188. https://doi.org/10.1016/j.jwpe.2017.04.008
  9. C.-Y. Lin, C.-C. Chiang, M.-L. Thi Nguyen, C.-H. Lay, Int. J. Hydrogen Energy 42 (2017) 12153. https://doi.org/10.1016/j.ijhydene.2017.03.184
  10. R.O. Cristovao, C. Goncalves, C.M. Botelho, R.J.E. Martins, R.A.R. Boaventura, J. Environ. Chem. Eng. 2 (2014) 2372. https://doi.org/10.1016/j.jece.2013.12.023
  11. R. Li, C. Yang, H. Chen, G. Zeng, G. Yu, J. Guo, J. Hazard. Mater.167 (2009) 1028. https://doi.org/10.1016/j.jhazmat.2009.01.090
  12. Y. Jin, Q. Yue, K. Yang, S. Wu, S. Li, B. Gao, Y. Gao, J. Environ. Sci. 63 (2017) 43-49.
  13. S.F.M. Noor, N. Ahmad, M.A. Khattak, M.S. Khan, A. Mukhtar, S. Kazi, S. Badshah, R. Khan, J. Taibah Univ. Sci. 11 (2017) 949. https://doi.org/10.1016/j.jtusci.2016.11.005
  14. K. Kimura, D. Honoki, T. Sato, Sep. Purif. Technol. 181 (2017) 37. https://doi.org/10.1016/j.seppur.2017.03.005
  15. H. Patel, R.T. Vashi, in: H. Patel, R.T. Vashi (Eds.), Chapter 4 - Batch Adsorption Treatment of Textile Wastewater, Elsevier, Boston, 2015, pp. 111.
  16. G.Z. Kyzas, J. Fu, N.K. Lazaridis, D.N. Bikiaris, K.A. Matis, J. Mol. Liq. 209 (2015) 87. https://doi.org/10.1016/j.molliq.2015.05.025
  17. B. de Caprariis, P. De Filippis, A.D. Hernandez, E. Petrucci, A. Petrullo, M. Scarsella, M. Turchi, J. Environ. Manage. 197 (2017) 231. https://doi.org/10.1016/j.jenvman.2017.04.007
  18. O. Suarez-Iglesias, S. Collado, P. Oulego, M. Diaz, Chem. Eng. J. 313 (2017) 121. https://doi.org/10.1016/j.cej.2016.12.022
  19. M. Delkash, B. Ebrazi Bakhshayesh, H. Kazemian, Microporous Mesoporous Mater. 214 (2015) 224. https://doi.org/10.1016/j.micromeso.2015.04.039
  20. S. Wang, Y. Peng, Chem. Eng. J. 156 (2010) 11. https://doi.org/10.1016/j.cej.2009.10.029
  21. S. Abbaszadeh, S.R. Wan Alwi, C. Webb, N. Ghasemi, I.I. Muhamad, J. Clean. Prod. 118 (2016) 210. https://doi.org/10.1016/j.jclepro.2016.01.054
  22. J. Bialczyk, P. Natkanski,  P. Kustrowski, U. Czaja-Prokop, B. Bober, A. Kaminski, Appl. Clay Sci. 148 (2017) 17. https://doi.org/10.1016/j.clay.2017.07.026
  23. T.A. Khan, S. Dahiya, I. Ali, Appl. Clay Sci. 69 (2012) 58. https://doi.org/10.1016/j.clay.2012.09.001
  24. Z.M. Magriotis, P.V.B. Leal, P.F. de Sales, R.M. Papini, P.R.M. Viana, P.A. Arroyo, Appl. Clay Sci. 91-92 (2014) 55. https://doi.org/10.1016/j.clay.2014.02.007
  25. M. Struijk, F. Rocha, C. Detellier, Appl. Clay Sci. 150 (2017) 192. https://doi.org/10.1016/j.clay.2017.09.024
  26. A. Gil, F.C.C. Assis, S. Albeniz, S.A. Korili, Chem. Eng. J. 168 (2011) 1032. https://doi.org/10.1016/j.cej.2011.01.078
  27. A.-M. Georgescu, F. Nardou, V. Zichil, I.D. Nistor, Appl. Clay Sci. 152 (2018) 44. https://doi.org/10.1016/j.clay.2017.10.031
  28. T.L. Rodrigues Mota, A.P. Marques de Oliveira, E.H.M. Nunes, M. Houmard, Microporous Mesoporous Mater. 253 (2017) 177. https://doi.org/10.1016/j.micromeso.2017.07.010
  29. A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer, A. Badiei, Powder Technol. 319 (2017) 60. https://doi.org/10.1016/j.powtec.2017.06.044
  30. A. Asfaram, M. Ghaedi, M.H. Ahmadi Azqhandi, A. Goudarzi, S. Hajati, J. Ind. Eng. Chem. 54 (2017) 377. https://doi.org/10.1016/j.jiec.2017.06.018
  31. H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, J. Mol. Liq. 219 (2016) 667. https://doi.org/10.1016/j.molliq.2016.03.050
  32. E. Sharifpour, H. Haddadi, M. Ghaedi, A. Asfaram, S. Wang, RSC Adv. 6 (2016) 66311. https://doi.org/10.1039/C6RA13286C
  33. R.M. Novais, G. Ascensao, D.M. Tobaldi, M.P. Seabra, J.A. Labrincha, J. Clean. Prod. 171 (2018) 783. https://doi.org/10.1016/j.jclepro.2017.10.078
  34. M. Habibzadeh, N. Chaibakhsh, A.S. Naeemi, Ecol. Eng. 111 (2018) 85. https://doi.org/10.1016/j.ecoleng.2017.12.001
  35. D. Vukelic, N. Boskovic, B. Agarski, J. Radonic, I. Budak, S. Pap, M. Turk Sekulic, J. Clean. Prod. 174 (2018) 1620. https://doi.org/10.1016/j.jclepro.2017.11.098
  36. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Arab. J. Chem. (2016), doi:http://dx.doi.org/10.1016/j.arabjc.2016.10.004 (in press).
  37. A. Tripathi, M. Ranjan, J. Biorem. Biodegrad. (2015), doi:http://dx.doi.org/10.4172/2155-6199.1000315.
  38. I.M. Reck, R.M. Paixao, R. Bergamasco, M.F. Vieira, A.M.S. Vieira, J. Clean. Prod. 171 (2018) 85. https://doi.org/10.1016/j.jclepro.2017.09.237
  39. J. Llado, R.R. Gil, C. Lao-Luque, M. Sole-Sardans, E. Fuente, B. Ruiz, J. Environ. Chem. Eng. 5 (2017) 2090. https://doi.org/10.1016/j.jece.2017.04.018
  40. M.C. Ncibi, M. Sillanpaa, J. Mol. Liq. 238 (2017) 379. https://doi.org/10.1016/j.molliq.2017.05.028
  41. G.M.D. Ferreira, G.M.D. Ferreira, M.C. Hespanhol, J. de Paula Rezende, A.C. dos Santos Pires, L.V.A. Gurgel, L.H.M. da Silva, Colloid Surf. A: Physicochem. Eng. Asp. 529 (2017) 531. https://doi.org/10.1016/j.colsurfa.2017.06.021
  42. F.A. Taher, F.H. Kamal, N.A. Badawy, A.E. Shrshr, Mater. Res. Bull. 97 (2018) 361. https://doi.org/10.1016/j.materresbull.2017.09.023
  43. A.A. Farghali, M. Bahgat, A. Enaiet Allah, M.H. Khedr, Beni-Suef Univ. J. Basic Appl. Sci. 2 (2013) 61. https://doi.org/10.1016/j.bjbas.2013.01.001
  44. E.A. Dil, M. Ghaedi, A.M. Ghaedi, A. Asfaram, A. Goudarzi, S. Hajati, M. Soylak, S. Agarwal, V.K. Gupta, J. Ind. Eng. Chem. 34 (2016) 186. https://doi.org/10.1016/j.jiec.2015.11.010
  45. M.A.K.L. Dissanayake, H.K.D.W.M.N. Divarathna, C.B. Dissanayake, G.K.R. Senadeera, P.M.P.C. Ekanayake, C.A. Thotawattage, J. Photochem. Photobiol. A: Chem. 322-323 (2016) 110. https://doi.org/10.1016/j.jphotochem.2016.02.017
  46. S.U. Muhamad, N.H. Idris, H.M. Yusoff, M.F.M. Din, S.R. Majid, Electrochim. Acta 249 (2017) 9. https://doi.org/10.1016/j.electacta.2017.07.174
  47. M. Roosta, M. Ghaedi, A. Asfaram, RSC Adv. 5 (2015) 57021. https://doi.org/10.1039/C5RA03519H
  48. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Dalton Trans. 44 (2015) 14707. https://doi.org/10.1039/C5DT01504A
  49. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, RSC Adv. 5 (2015) 72300. https://doi.org/10.1039/C5RA10815B
  50. W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon 119 (2017) 150. https://doi.org/10.1016/j.carbon.2017.04.027
  51. J.R. Siqueira, O.N. Oliveira, in: A.L. Da Roz, M. Ferreira, F. de Lima Leite, O.N. Oliveira (Eds.), 9 - Carbon-Based Nanomaterials, William Andrew Publishing, 2017, pp. 233.
  52. X. Ren, G. Zeng, L. Tang, J. Wang, J. Wan, H. Feng, B. Song, C. Huang, X. Tang, Soil Biol. Biochem. 116 (2018) 70. https://doi.org/10.1016/j.soilbio.2017.09.027
  53. Y. Yang, X. Yang, Y. Yang, Q. Yuan, Carbon 129 (2018) 380. https://doi.org/10.1016/j.carbon.2017.12.013
  54. B.D. Malhotra, M.A. Ali, in: B.D. Malhotra, M.A. Ali (Eds.), Chapter 2 - Functionalized Carbon Nanomaterials for Biosensors, William Andrew Publishing, 2018, pp. 75.
  55. Y.J. Kwon, Y. Kim, H. Jeon, S. Cho, W. Lee, J.U. Lee, Compos. B: Eng. 122 (2017) 23. https://doi.org/10.1016/j.compositesb.2017.04.005
  56. S. Imani Yengejeh, S.A. Kazemi, A. Ochsner, Comput. Mater. Sci.136 (2017) 85. https://doi.org/10.1016/j.commatsci.2017.04.023
  57. Y.-F. Chen, Y.-J. Tan, J. Li, Y.-B. Hao, Y.-D. Shi, M. Wang, Polym. Test. 65 (2018) 387. https://doi.org/10.1016/j.polymertesting.2017.12.019
  58. A. Deb, R. Vimala, J. Drug Deliv. Sci. Technol. 43 (2018) 333. https://doi.org/10.1016/j.jddst.2017.10.025
  59. W. Ahmed, A. Elhissi, V. Dhanak, K. Subramani, in: K. Subramani, W. Ahmed (Eds.), Chapter 18 - Carbon Nanotubes: Applications in Cancer Therapy and Drug Delivery Research, William Andrew Publishing, 2018, pp. 371.
  60. M. IonitSa, L.E. Crica, S.I. Voicu, S. Dinescu, F. Miculescu, M. Costache, H. Iovu, Carbohydr. Polym. 183 (2018) 50. https://doi.org/10.1016/j.carbpol.2017.10.095
  61. Z.-F. Li, L. Xin, F. Yang, Y. Liu, Y. Liu, H. Zhang, L. Stanciu, J. Xie, Nano Energy 16 (2015) 281. https://doi.org/10.1016/j.nanoen.2015.06.031
  62. K.-T. Jeng, N.-Y. Hsu, C.-C. Chien, Int. J. Hydrogen Energy 36 (2011) 3997. https://doi.org/10.1016/j.ijhydene.2010.10.062
  63. Y.H. Teow, A.W. Mohammad, Desalination (2017), doi:http://dx.doi.org/10.1016/j.desal.2017.11.041.
  64. R.K. Thines, N.M. Mubarak, S. Nizamuddin, J.N. Sahu, E.C. Abdullah, P. Ganesan, J. Taiwan Inst. Chem. Eng. 72 (2017) 116. https://doi.org/10.1016/j.jtice.2017.01.018
  65. S.C. Ray, N.R. Jana, Chapter 2 - Application of Carbon-Based Nanomaterials for Removal of Biologically Toxic Materials, Elsevier, 2017, pp. 43.
  66. Y. Manawi, V. Kochkodan, M.A. Hussein, M.A. Khaleel, M. Khraisheh, N. Hilal, Desalination 391 (2016) 69. https://doi.org/10.1016/j.desal.2016.02.015
  67. B. Sarkar, S. Mandal, Y.F. Tsang, P. Kumar, K.-H. Kim, Y.S. Ok, Sci. Total Environ. 612 (2018) 561. https://doi.org/10.1016/j.scitotenv.2017.08.132
  68. S.H. Chae, Y.H. Lee, Nano Convergence 1 (2014) 15. https://doi.org/10.1186/s40580-014-0015-5
  69. S. Iijima, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  70. K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A. Pal, Z.-J. Wang, I. Tyagi, M. Kazemi, J. Nanostruct. Chem. 5 (2015) 227. https://doi.org/10.1007/s40097-015-0158-x
  71. M.A. Tofighy, T. Mohammadi, J. Hazard. Mater. 185 (2011) 140. https://doi.org/10.1016/j.jhazmat.2010.09.008
  72. O. Moradi, K. Zare, Fullerenes Nanotubes Carbon Nanostruct. 19 (2011) 628. https://doi.org/10.1080/1536383X.2010.504955
  73. T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, J. Hazard. Mater. 196 (2011) 109. https://doi.org/10.1016/j.jhazmat.2011.08.078
  74. A.K. Dutta, U.K. Ghorai, K.K. Chattopadhyay, D. Banerjee, Physica E: Low Dimension. Syst. Nanostruct. 99 (2018) 6-15. https://doi.org/10.1016/j.physe.2018.01.008
  75. M.A. Atieh, APCBEE Procedia 10 (2014) 136. https://doi.org/10.1016/j.apcbee.2014.10.031
  76. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, J. Adv. Res. 6 (2015) 405. https://doi.org/10.1016/j.jare.2014.06.001
  77. J.-G. Yu, X.-H. Zhao, H. Yang, X.-H. Chen, Q. Yang, L.-Y. Yu, J.-H. Jiang, X.-Q. Chen, Sci. Total Environ. 482-483 (2014) 241. https://doi.org/10.1016/j.scitotenv.2014.02.129
  78. H.A. Asmaly, B. Abussaud, Ihsanullah, T.A. Saleh, V.K. Gupta, M.A. Atieh, J. Saudi Chem. Soc. 19 (2015) 511. https://doi.org/10.1016/j.jscs.2015.06.002
  79. A. Shaygan Nia, W.H. Binder, Prog. Polym. Sci. 67 (2017) 48. https://doi.org/10.1016/j.progpolymsci.2016.12.005
  80. J. Shi, Y. Fang, in: H. Zhu, Z. Xu, D. Xie, Y. Fang (Eds.), 9 - Biomedical Applications of Graphene, Academic Press, 2018, pp. 215.
  81. A. Nag, A. Mitra, S.C. Mukhopadhyay, Sens. Actuat. A: Phys. 270 (2018) 177. https://doi.org/10.1016/j.sna.2017.12.028
  82. H. Zhang, Y. Liu, S. Huo, J. Briscoe, W. Tu, O.T. Picot, A. Rezai, E. Bilotti, T. Peijs, Compos. Sci. Technol. 139 (2017) 138. https://doi.org/10.1016/j.compscitech.2016.12.020
  83. S.J. Lee, Y.R. Lim, S. Ji, S.K. Kim, Y. Yoon, W. Song, S. Myung, J. Lim, K.-S. An, J.-S. Park, S.S. Lee, Carbon 126 (2018) 241. https://doi.org/10.1016/j.carbon.2017.09.108
  84. K. Lu, G. Zhao, X. Wang, Chin. Sci. Bull. 57 (2012) 1223. https://doi.org/10.1007/s11434-012-4986-5
  85. Z. Gong, S. Li, W. Han, J. Wang, J. Ma, X. Zhang, Appl. Surf. Sci. 362 (2016) 459. https://doi.org/10.1016/j.apsusc.2015.11.251
  86. H. Pablo, S.O. Hector, G.A. Alberto, L.V. Jose, Adsorpt. Sci. Technol. 31 (2013) 359. https://doi.org/10.1260/0263-6174.31.4.359
  87. J. Lee, K.-A. Min, S. Hong, G. Kim, Chem. Phys. Lett. 618 (2015) 57. https://doi.org/10.1016/j.cplett.2014.10.064
  88. W. Zhang, C. Zhou, W. Zhou, A. Lei, Q. Zhang, Q. Wan, B. Zou, Bull. Environ. Contam. Toxicol. 87 (2011) 86. https://doi.org/10.1007/s00128-011-0304-1
  89. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Chem. Eng. Res. Des. 91 (2013) 361. https://doi.org/10.1016/j.cherd.2012.07.007
  90. J. Xu, L. Wang, Y. Zhu, Langmuir 28 (2012) 8418-8425. https://doi.org/10.1021/la301476p
  91. A. Gopalakrishnan, R. Krishnan, S. Thangavel, G. Venugopal, S.-J. Kim, J. Ind. Eng. Chem. 30 (2015) 14. https://doi.org/10.1016/j.jiec.2015.06.005
  92. E.E. Perez-Ramirez, M.D.L. Luz-Asuncion, A.L. Martinez-Hernandez, C. Velasco-Santos, in: W. Cao (Ed.), Graphene Materials to Remove Organic Pollutants and Heavy Metals from Water: Photocatalysis and Adsorption, InTech, Rijeka, 2016 p. Ch. 18.
  93. A. Fakhri, J. Saudi Chem. Soc. 21 (2017) S52. https://doi.org/10.1016/j.jscs.2013.10.002
  94. G.K. Ramesha, A. Vijaya Kumara, H.B. Muralidhara, S. Sampath, J. Colloid Interface Sci. 361 (2011) 270. https://doi.org/10.1016/j.jcis.2011.05.050
  95. A. Carmalin Sophia, E.C. Lima, N. Allaudeen, S. Rajan, Desalin. Water Treat. 57 (2016) 27573.
  96. F.V. Ferreira, W. Francisco, B.R.C.D. Menezes, L.D.S. Cividanes, A.D.R. Coutinho, G.P. Thim, Appl. Surf. Sci. 357 (2015) 2154. https://doi.org/10.1016/j.apsusc.2015.09.202
  97. Y. Patino, E. Diaz, S. Ordonez, E. Gallegos-Suarez, A. Guerrero-Ruiz, I. Rodriguez-Ramos, Chemosphere 136 (2015) 174. https://doi.org/10.1016/j.chemosphere.2015.04.089
  98. S.A. Shamsuddin, N.H.A. Halim, N. Deraman, U. Hashim, The Characterization Study of Functionalized Multi-Wall Carbon Nanotubes Purified by Acid Oxidation, IEEE Regional Symposium on Micro and Nano Electronics, Kota Kinabalu, 2011, pp. 263-265.
  99. F. Yin, B. Gu, Y. Lin, N. Panwar, S.C. Tjin, J. Qu, S.P. Lau, K.-T. Yong, Coord. Chem. Rev. 347 (2017) 77. https://doi.org/10.1016/j.ccr.2017.06.024
  100. S. Merum, J.B. Veluru, R. Seeram, Mater. Sci. Eng. B 223 (2017) 43. https://doi.org/10.1016/j.mseb.2017.06.002
  101. L. Stobinski, B. Lesiak, L. Kover, J. Toth, S. Biniak, G. Trykowski, J. Judek, J. Alloys Compd. 501 (2010) 77. https://doi.org/10.1016/j.jallcom.2010.04.032
  102. S. Sahebian, S.M. Zebarjad, J. vahdati Khaki, A. Lazzeri, J. Nanostruct. Chem. 5 (2015) 287. https://doi.org/10.1007/s40097-015-0160-3
  103. C. Sophia A, E.C. Lima, Ecotoxicol. Environ. Saf. 150 (2018) 1. https://doi.org/10.1016/j.ecoenv.2017.12.026
  104. L. Lavagna, D. Massella, M. Pavese, Diamond Relat. Mater. 80 (2017) 118. https://doi.org/10.1016/j.diamond.2017.10.013
  105. S. Gomez, N.M. Rendtorff, E.F. Aglietti, Y. Sakka, G. Suarez, Chem. Phys. Lett. 689 (2017) 135. https://doi.org/10.1016/j.cplett.2017.10.020
  106. S. Gomez, N.M. Rendtorff, E.F. Aglietti, Y. Sakka, G. Suarez, Appl. Surf. Sci. 379 (2016) 264. https://doi.org/10.1016/j.apsusc.2016.04.065
  107. D.D. Shao, J. Hu, X.K. Wang, M. Nagatsu, Chem. Eng. J. 170 (2011) 498. https://doi.org/10.1016/j.cej.2010.09.023
  108. D. Shao, G. Sheng, C. Chen, X. Wang, M. Nagatsu, Chemosphere 79 (2010) 679. https://doi.org/10.1016/j.chemosphere.2010.03.008
  109. P. Clement, I. Hafaiedh, E.J. Parra, A. Thamri, J. Guillot, A. Abdelghani, E. Llobet, Carbon 78 (2014) 510. https://doi.org/10.1016/j.carbon.2014.07.032
  110. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Compos. A: Appl. Sci. Manuf. 41 (2010) 1345. https://doi.org/10.1016/j.compositesa.2010.07.003
  111. B.C. Nath, B. Gogoi, M. Boruah, M. Khannam, G.A. Ahmed, S.K. Dolui, Electrochim. Acta 146 (2014) 106. https://doi.org/10.1016/j.electacta.2014.08.134
  112. S. Mahalingam, H. Abdullah, A. Manap, Electrochim. Acta 264 (2018) 275. https://doi.org/10.1016/j.electacta.2018.01.138
  113. D. Bikiaris, A. Vassiliou, K. Chrissafis, K.M. Paraskevopoulos, A. Jannakoudakis, A. Docoslis, Polym. Degrad. Stab. 93 (2008) 952. https://doi.org/10.1016/j.polymdegradstab.2008.01.033
  114. M. Elkashef, K. Wang, M.N. Abou-Zeid, Front. Struct. Civil Eng. 10 (2016) 180. https://doi.org/10.1007/s11709-015-0325-7
  115. L. Meng, C. Fu, Q. Lu, Prog. Nat. Sci. 19 (2009) 801. https://doi.org/10.1016/j.pnsc.2008.08.011
  116. L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128 (2006) 37.
  117. X. Nan, J. Ma, J. Liu, J. Zhao, W. Zhu, Fibers Polym. 17 (2016) 1866. https://doi.org/10.1007/s12221-016-6388-9
  118. E. Lemery, S. Briancon, Y. Chevalier, C. Bordes, T. Oddos, A. Gohier, M.-A. Bolzinger, Colloids Surf. A: Physicochem. Eng. Asp. 469 (2015) 166. https://doi.org/10.1016/j.colsurfa.2015.01.019
  119. J. Blasco, M. Hampel, I. Moreno-Garrido, Compr. Anal. Chem. 40 (2003) 827.
  120. S. Rebello, A.K. Asok, S. Mundayoor, M. Jisha, Environ. Chem. Lett. 12 (2014) 275. https://doi.org/10.1007/s10311-014-0466-2
  121. T. Fujigaya, N. Nakashima, Sci. Technol. Adv. Mater. 16 (2015) 024802. https://doi.org/10.1088/1468-6996/16/2/024802
  122. H.Y. Mao, Y.H. Lu, J.D. Lin, S. Zhong, A.T.S. Wee, W. Chen, Prog. Surf. Sci. 88 (2013) 132. https://doi.org/10.1016/j.progsurf.2013.02.001
  123. Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, F. Kang, Langmuir 27 (2011) 7558. https://doi.org/10.1021/la200606r
  124. E. Jimenez-Cervantes, J. Lopez-Barroso, A. Martinez-Hernandez, C. Velasco-Santos, Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules, Intech Open, 2016.
  125. Z. Lin, Y. Liu, Y. Yao, O. Hildreth, Z. Li, K.-S. Moon, C.P. Wong, J. Phys. Chem. C 115 (2011) 7120-7125.
  126. B. Xue, J. Zhu, N. Liu, Y. Li, Catal. Commun. 64 (2015) 105. https://doi.org/10.1016/j.catcom.2015.02.003
  127. S. Hou, M.L. Kasner, S. Su, K. Patel, R. Cuellari, J. Phys. Chem. C (2010).
  128. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, J. Mater. Chem. 20 (2010) 2277. https://doi.org/10.1039/b920539j
  129. D. Yoo, J. Kim, J.H. Kim, Nano Res. 7 (2014) 717. https://doi.org/10.1007/s12274-014-0433-z
  130. Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao, Y. Zhang, Mater. Chem. Phys. 202 (2017) 266. https://doi.org/10.1016/j.matchemphys.2017.09.028
  131. A. Pirkarami, M.E. Olya, J. Saudi Chem. Soc. 21 (2017) S179. https://doi.org/10.1016/j.jscs.2013.12.008
  132. P. Bradder, S. King Ling, S. Wang, S. Liu, J. Chem. Eng. Data 56 (2010) 138-141.
  133. M. Rajabi, K. Mahanpoor, O. Moradi, RSC Adv. 7 (2017) 47083. https://doi.org/10.1039/C7RA09377B
  134. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, Y. Tang, H. Fan, Z. Yuan, J. Chen, ACS Appl. Mater. Interfaces 4 (2012) 5749. https://doi.org/10.1021/am301053m
  135. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, J. Wang, J. Mater. Chem. 22 (2012) 1033. https://doi.org/10.1039/C1JM13433G
  136. Y. Jiang, J.-L. Gong, G.-M. Zeng, X.-M. Ou, Y.-N. Chang, C.-H. Deng, J. Zhang, H.-Y. Liu, S.-Y. Huang, Int. J. Biol. Macromol. 82 (2016) 702. https://doi.org/10.1016/j.ijbiomac.2015.11.021
  137. O. Moradi, Fullerenes Nanotubes Carbon Nanostruct. 21 (2013) 286. https://doi.org/10.1080/1536383X.2011.572317
  138. M. Ghaedi, H. Khajehsharifi, A.H. Yadkuri, M. Roosta, A. Asghari, Toxicol. Environ. Chem. 94 (2012) 873. https://doi.org/10.1080/02772248.2012.678999
  139. Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun, S. Wang, Chem. Eng. J. 184 (2012) 326. https://doi.org/10.1016/j.cej.2011.12.017
  140. M.O. Ansari, R. Kumar, S.A. Ansari, S.P. Ansari, M.A. Barakat, A. Alshahrie, M.H. Cho, J. Colloid Interface Sci. 496 (2017) 407. https://doi.org/10.1016/j.jcis.2017.02.034
  141. S. Yang, L. Wang, X. Zhang, W. Yang, G. Song, Chem. Eng. J. 275 (2015) 315. https://doi.org/10.1016/j.cej.2015.04.049
  142. W. Konicki, I. Pelech, E. Mijowska, I. Jasinska, Chem. Eng. J. 210 (2012) 87. https://doi.org/10.1016/j.cej.2012.08.025
  143. K. Gupta, O.P. Khatri, J. Colloid Interface Sci. 501 (2017) 11. https://doi.org/10.1016/j.jcis.2017.04.035
  144. M. Setareh Derakhshan, O. Moradi, J. Ind. Eng. Chem. 20 (2014) 3186. https://doi.org/10.1016/j.jiec.2013.11.064
  145. D. Zhao, W. Zhang, C. Chen, X. Wang, Procedia Environ. Sci. 18 (2013) 890. https://doi.org/10.1016/j.proenv.2013.04.120
  146. A. Ahmad, M.H. Razali, M. Mamat, F.S.B. Mehamod, K. Anuar Mat Amin, Chemosphere 168 (2017) 474. https://doi.org/10.1016/j.chemosphere.2016.11.028
  147. N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan, J. Cao, J. Solid State Chem. 184 (2011) 953. https://doi.org/10.1016/j.jssc.2011.01.014
  148. D. Robati, B. Mirza, R. Ghazisaeidi, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V. K. Gupta, J. Mol. Liq. 216 (2016) 830. https://doi.org/10.1016/j.molliq.2016.02.004
  149. S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu, K. Chen, Carbon 50 (2012) 2337. https://doi.org/10.1016/j.carbon.2012.01.057
  150. X. Zhang, C. Cheng, J. Zhao, L. Ma, S. Sun, C. Zhao, Chem. Eng. J. 215-216 (2013) 72. https://doi.org/10.1016/j.cej.2012.11.009
  151. F. Liu, S. Chung, G. Oh, T. Seok Seo, ACS Appl. Mater. Interfaces 4 (2011) 922-927.
  152. A.M. Khaksar, S. Nazif, A. Taebi, E. Shahghasemi, J. Photochem. Photobiol. A: Chem. 348 (2017) 161. https://doi.org/10.1016/j.jphotochem.2017.08.034
  153. M. Hemmati, N. Nazari, A. Hemmati, S. Shirazian, J. Ind. Eng. Chem. 21 (2015) 1410. https://doi.org/10.1016/j.jiec.2014.06.015
  154. L.G. Sorokhaibam, M. Ahmaruzzaman, in: V. Vivek, V.M. Bhandari (Eds.), Chapter 8 - Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials A2 - Ranade, Butterworth-Heinemann, Oxford, 2014, pp. 323.
  155. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, Curr. Pollut. Rep. 2 (2016) 157. https://doi.org/10.1007/s40726-016-0035-3
  156. F. Moradi, M. Darvish Ganji, Y. Sarrafi, Diamond Relat. Mater. 82 (2018) 7. https://doi.org/10.1016/j.diamond.2017.12.014
  157. L. Yu, X. Wu, Q. Liu, L. Liu, X. Jiang, J. Yu, C. Feng, M. Zhong, J. Nanosci. Nanotechnol. 16 (2016) 12426. https://doi.org/10.1166/jnn.2016.12974
  158. M. de la Luz-Asuncion, V. Sanchez-Mendieta, A.L. Martinez-Hernandez, V.M. Castano, C. Velasco-Santos, J. Nanomater. 2015 (2015), doi:http://dx.doi.org/10.1155/2015/405036 Article ID 405036, 14 pages.
  159. X. Hu, Y. Yu, S. Ren, N. Lin, Y. Wang, J. Zhou, J. Porous Mater. (2017).
  160. M. Mukherjee, S. Goswami, P. Banerjee, S. Sengupta, P. Das, P.K. Banerjee, S. Datta, Environ. Technol. Innov. (2017), doi:http://dx.doi.org/10.1016/j.eti.2016.11.006.
  161. J. Xu, Y. Zhu, Acta Phys. Chim. Sin. (2013).
  162. Y. Zhang, Y. Cheng, N. Chen, Y. Zhou, B. Li, W. Gu, X. Shi, Y. Xian, J. Colloid Interface Sci. 421 (2014) 85. https://doi.org/10.1016/j.jcis.2014.01.022
  163. M.-W. Shih, C.-J.M. Chin, Y.-L. Yu, Process Saf. Environ. Prot. 112 (2017) 308. https://doi.org/10.1016/j.psep.2017.04.033
  164. C.-Y. Kuo, Desalination 249 (2009) 976. https://doi.org/10.1016/j.desal.2009.06.058
  165. Q. Liao, J. Sun, L. Gao, Carbon 46 (2008) 553. https://doi.org/10.1016/j.carbon.2007.12.009
  166. M. Mujawar, N. Sazila, N. Sabzoi, E. Abdullah, J. Narayan Sahu, NanoWorld J. 3 (2017) 32-37. https://doi.org/10.17756/nwj.2017-043
  167. Y.-X. Yao, H.-B. Li, J.-Y. Liu, X.-L. Tan, J.-G. Yu, Z.-G. Peng, J. Nanomater. (2014).
  168. P.E. Diaz-Flores, F. Lopez-Uri'as, M. Terrones, J.R. Rangel-Mendez, J. Colloid Interface Sci. 334 (2009) 124. https://doi.org/10.1016/j.jcis.2009.02.045
  169. A. Toth, A. Torocsik, E. Tombacz, K. Laszlo, J. Colloid Interface Sci. 387 (2012) 244. https://doi.org/10.1016/j.jcis.2012.07.064
  170. B. Zhang, F. Li, T. Wu, D. Sun, Y. Li, Colloids Surf. A: Physicochem. Eng. Asp. 464 (2015) 78. https://doi.org/10.1016/j.colsurfa.2014.10.020
  171. Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng, X. Chen, H. Wang, L. Zhang, J. Shao, Sci. Rep. 6 (2016) 25638. https://doi.org/10.1038/srep25638
  172. R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Appl. Surf. Sci. 256 (2010) 4447. https://doi.org/10.1016/j.apsusc.2010.01.057
  173. A. Eslami, M. Mehralian, A. Moheb, J. Water Reuse Desalin. (2016), doi:http://dx.doi.org/10.2166/wrd.2016.044jwrd2016044.
  174. Y. Zhang, Y. Tang, S. Li, S. Yu, Chem. Eng. J. 222 (2013) 94-100. https://doi.org/10.1016/j.cej.2013.02.027

Cited by

  1. Immobilization of Peroxidase on Functionalized MWCNTs-Buckypaper/Polyvinyl alcohol Nanocomposite Membrane vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-39621-4
  2. Comparison of Drying Method on Acid-functionalized Multi-walled Carbon Nanotube and their Application for Dye Removal vol.495, pp.None, 2019, https://doi.org/10.1088/1757-899x/495/1/012057
  3. Preparation of Molecularly Imprinted Poly(methacrylic acid) Grafted on Iniferter-Modified Multiwalled Carbon Nanotubes by Living-Radical Polymerization for 17β-Estradiol Extraction vol.64, pp.5, 2018, https://doi.org/10.1021/acs.jced.8b01010
  4. Packaging vertically aligned carbon nanotubes into a heat-shrink tubing for efficient removal of phenolic pollutants vol.9, pp.39, 2018, https://doi.org/10.1039/c9ra03948a
  5. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid vol.36, pp.6, 2018, https://doi.org/10.1007/s11095-019-2621-8
  6. Emerging pollutants-Part II: Treatment vol.91, pp.10, 2019, https://doi.org/10.1002/wer.1233
  7. Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: Influence of mesoporosity on efficiency of dye adsorption vol.296, pp.None, 2018, https://doi.org/10.1016/j.micromeso.2020.110005
  8. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review vol.18, pp.4, 2018, https://doi.org/10.1007/s10311-020-01001-0
  9. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review vol.18, pp.4, 2018, https://doi.org/10.1007/s10311-020-01001-0
  10. A review of nano-based materials used as flocculants for water treatment vol.17, pp.7, 2018, https://doi.org/10.1007/s13762-020-02723-y
  11. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems vol.13, pp.7, 2018, https://doi.org/10.1007/s12274-020-2758-0
  12. Facile synthesis of a BCN nanofiber and its ultrafast adsorption performance vol.10, pp.42, 2018, https://doi.org/10.1039/d0ra01938k
  13. Hydrosoluble phosphonic acid functionalized poly(2‐ethyl‐2‐oxazoline) chelating polymers for the sorption of metallic cations vol.58, pp.20, 2020, https://doi.org/10.1002/pol.20200487
  14. Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS vol.27, pp.32, 2018, https://doi.org/10.1007/s11356-020-10045-2
  15. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application vol.13, pp.10, 2021, https://doi.org/10.3390/su13105717
  16. Green synthesis of poly(pyrrole methane) for enhanced adsorption of anionic and cationic dyes from aqueous solution vol.590, pp.None, 2018, https://doi.org/10.1016/j.jcis.2021.01.073
  17. Green Synthesis and Optimization of 3D Nitrogen‐Doped Carbon Network via Biomass Waste for Highly Efficient Bisphenol S Adsorption vol.6, pp.25, 2018, https://doi.org/10.1002/slct.202101344
  18. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors vol.22, pp.23, 2018, https://doi.org/10.3390/ijms222312968
  19. Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study vol.346, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.118227