• Title/Summary/Keyword: inorganic particle

Search Result 302, Processing Time 0.027 seconds

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

Studies on Manufacture of Mineral Water with Wood Charcoals (목질탄화물을 이용한 미네랄수 제조에 관한 연구)

  • Shin, Soo-Jeong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.460-466
    • /
    • 2014
  • To evaluate wood charcoal as raw material for mineral water production, dissolution of inorganic ions from charcoal to water, pH and adsorption ability of chlorine in water were investigated as main variables. More potassium ion was dissolved in water as higher temperature manufactured charcoal but other ions showed no difference with different charcoal making temperatures. Highest dissolved cation was potassium followed by calcium and sodium. Among wood species, charcoal from Quercus variabilis and Platanus occidentalis showed significantly higher potassium content in water than that of larch, red pine and white pine. Other cations had similar pattern to the potassium but their difference was not apparent as much as potassium. pH value of water treated with charcoal was higher for wood charcoals from Platanus occidentalis (pH 8.5) and Quercus variabilis (pH 8.4) which contained higher inorganic cations. In chlorine removal in water by charcoal, all wood charcoals showed greater chlorine removal than that of the control, but softwood charcoals resulted in higher removal than those of hardwoods. There was no significant difference in the dissolution of cations and pHs between particle charcoal and whole charcoal. With easy of control, whole charcoal is better for mineral water making raw material than particle charcoal does.

A study on the preparation of $(Ba_{1-X}Sr_X)ZrO_3$ using oxalate method and its dielectric properties (수산염법에 의한 $(Ba_{1-X}Sr_X)ZrO_3$의 합성 및 그의 유전특성에 관한 연구)

  • Oh Seong Kweon;Nam Seok Baik;Byung Ha Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.252-261
    • /
    • 1994
  • The $(Ba_{1-X}Sr_X)ZrO_3$ powder showing chemically pure and fine particle size was attempted to be synthesized by the oxalate method. The objective of this study is to determine the optimum synthesis condition of stable $(Ba_{1-X}Sr_X)ZrO_3$ powder in terms of the temperatures coefficient of resonant frequency ${\tau}_f$ by examining the microstructure and dielectric properties of the synthesized powder. The six compounds (x=0, 0.2, 0.4, 0.6, 0.8, 1) of $(Ba_{1-X}Sr_X)ZrO_3$ were prepared by the oxalate method, and then calcined at $1000^{\circ}C$ to obtain the crystalline $(Ba_{1-X}Sr_X)ZrO_3$ powder. The synthesized powder showed the globular-shape and average particle size of less than $0.2 \mu\textrm{m}$. The composition of x=0.5, i.e., half of Ba was replaced by Sr, is experted to show the zero value of temperatures coefficient of capacitance ${\tau}_c$.

  • PDF

Preparation and Characterization of Polymer Coated BaTiO3 and Polyimide Nanocomposite Films (고분자로 표면 코팅된 BaTiO3와 이를 이용한 폴리이미드 나노복합필름의 제조 및 특성)

  • Han, Seung San;Han, Ji Yun;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.527-531
    • /
    • 2006
  • We have prepared organophilic inorganic particles and polyimide (PI) nanocomposite having excellent thermal stability and high dielectric constant that can be used for electronic application such as capacitor. We have chosen barium titanate (BT), a high dielectric constantmaterial and its surface was coated with nylon 6 to improve the affinity with PI. The FT-IR and TEM studies showed that the organophilic inorganic particle (BTN) has a polymer shell with thickness of 5 nm. We have suggested that it is possible to control the thickness of coating surface and also indicated the relationship between the ratio of inside and outside radius of BTN and the weight fraction of BT. The PI nanocomposite films based on poly(amic acid) and BTN were prepared by cyclodehydration reaction. The homogeneous dispersion of BTN in PI matrix was identified by using SEM. We have investigated the effect of BTN content on the coefficient of thermal stability, integral procedural decomposition temperature (IPDT), and dielectric constant of PI nanocomposite films.

Emulsion Stability of Low Viscosity W/O Emulsion and Application of Inorganic Sunscreen Agents (저점도 W/O 에멀젼의 유화 안정성 증진 및 무기 자외선 차단제의 적용)

  • Yeon, Jae Young;Seo, Jeong Min;Kim, Tae Hoon;Shim, Jae Gon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.985-1001
    • /
    • 2018
  • In this study, we tried the various experiments using the emulsifier, electrolyte, stabilizer and gelling agent in order to improve a stability of low viscosity W/O emulsion. As a result, when we used polyglyceryl-4 diisostearate/polyhydroxystearate/sebacate as a main emulsifier, PEG-30 dipolyhydroxystearate and cetyl PEG/PPG-10/1 dimethicone as a co-emulsifier for stable emulsification system, 0.5 % sodium chloride as an electrolyte, 1 % distearyldimonium chloride as a stabilizer, 0.5 % glyceryl behenate/eicosadioate as an oil gelling agent, emulsion particle is the best. Also, we got the stable and low viscosity W/O emulsion maintained at a constant viscosity at 2,000 cps or less. In addition, we were able to examine the possibility of development of low viscosity fluids type sunscreens with excellent feeling and stability through the application of inorganic sunscreen agents.

Particle Stabilized Wet Foam to Prepare SiO2-SiC Porous Ceramics by Colloidal Processing

  • Bhaskar, Subhasree;Park, Jung Gyu;Han, In Sub;Lee, Mi Jai;Lim, Tae Young;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.455-461
    • /
    • 2015
  • Porous ceramics with tailored pore size and shape are promising materials for the realization of a number of functional and structural properties. A novel method has been reported for the investigation of the role of SiC in the formation of $SiO_2$ foams by colloidal wet processing. Within a suitable pH range of 9.9 ~ 10.5 $SiO_2$, particles were partially hydrophobized using hexylamine as an amphiphile. Different mole ratios of the SiC solution were added to the surface modified $SiO_2$ suspension. The contact angle was found to be around $73^{\circ}$, with an adsorption free energy $6.8{\times}10^{-12}J$. The Laplace pressure of about 1.25 ~ 1.6 mPa was found to correspond to a wet foam stability of about 80 ~ 85%. The mechanical and thermal properties were analyzed for the sintered ceramics, with the highest compressive load observed at the mole ratio of 1:1.75. Hertzian indentations are used to evaluate the damage behavior under constrained loading conditions of $SiO_2$-SiC porous ceramics.

Electron Microscopy of the Al and $UO_2$ Nanophase Particles Synthesized in Horse Spleen Ferritin (말 비장 Ferritin에서 합성된 Al과 $UO_2$ 나노 입자의 전자현미경 연구)

  • Mun, Hyang-Ran;Kim, Kyung-Suk;Lee, Jung-Hoo
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.323-329
    • /
    • 1999
  • Synthesis of inorganic nanophase particles was performed to verify and understand the binding of non-ferrous metal ions including Al and $UO_2$ to the apoferritin molecules. Reconstituted inorganic particles of Al or $UO_2$ were identified by TEM as discrete electron dense cores encapsulated within the protein shell. The corresponding EDXA spectra confirm the presence of metal ions in the reconstituted ferritin. The Al cores of ferritin has been studied by TEM for the first time. Bimetallic cores with Al/Fe and $UO_2/Al$ were also produced and examined under TEM. Mixed metal cores encapsulated in the protein shell are well formed and its corresponding EDXA spectra also confirm the presence of metal ions in the mineral cores. Therefore, the present study proves that ferritin can be used to synthesize inorganic nanophase particles of Al and $UO_2$.

  • PDF

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject (식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안)

  • Chung, Sung-Hyun;Kim, Joong-Ho;Joo, Jong-Hun;Bang, Jae-Wook
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Preparation and Characterization of Bentonite Rheology Modifiers (벤토나이트 유동성 개질제의 제조 및 특성)

  • Lee, Suk-Kee;Koo, Kwang-Mo;Yang, Kyung-Su;Park, Sung-Woo;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1090-1096
    • /
    • 2002
  • Six different composition of water-swellable bentonite rheology modifiers(WSB-1~WSB-6) were prepared by the compounding of peptizers and anionic surfactants as an additives with Bentonite(BEN) of montmorillonite group. Average particle size, particle morphology and water-swellability of WSB and the viscosity with additives were measured, respectively. And the rheological behavior of WSB were investigated using the rheometer. The viscosity of WSB-1 increased with decreasing both pH and average particle size of BEN, WSB-2 treated $Na_2CO_3$ as a peptizer showed the maximum viscosity. These results can be interpretated cause for rearrangment as the edge-to-face structure of BEN particles containing WSB. Also, WSB-4∼WSB-6 containing both peptizer and anionic surfactant was sol phase that their viscosity was not nearly with the shear rate, however, WSB-3 containing Tetrasodium Pyrophosphate(TSPP) as an anionic surfactant showed the thixotropy by the viscosity difference of 1000 times with the shear rate. From this result, the anions of TSPP can be explained to arrange in edge of BEN particles containing WSB-3.