• 제목/요약/키워드: inorganic particle

검색결과 302건 처리시간 0.03초

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy

  • Couderc, Hugues;David, Eric;Frechette, Michel
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.291-296
    • /
    • 2014
  • In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.

나노 은 입자 세정법을 이용한 무기 악취물질의 제거 (Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles)

  • 신승규;;송지현
    • 한국대기환경학회지
    • /
    • 제24권6호
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발 (Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials)

  • 박종원;이경황;박병규;홍신협
    • Corrosion Science and Technology
    • /
    • 제12권6호
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

저온 열처리에 의한 Y-TZP 분말의 등온 상전이 (The Isothermal Phase Transformation by Low Temperature Aging in Y-TZP Powders)

  • 이종국;김환
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.971-978
    • /
    • 1990
  • The ifluence of transformability and stabilized effects in tetragonal phase on the isothermal phase transformation of Y-TZP at low temperature were investigated. The transformability of Y-TZP powders were gradually increased with calcination temeprature and reached maximum at critical temperature, but when the Y-TZP powders were calcined above critical temperature, transformability of Y-TZP were gradually decreased with increasing calcination temperature. It was concluded that maximum transformability was appeared because particle size effects decreased and constrain effects increased with calcined temperature. The isothermal phase transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amounts of transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amount of transformed monoclinic phase during aging decreased with increasing constrain effects. From these results, the mechanism of isothermal phase transformation and degradation behaviors at low temperature in Y-TZP was concluded that occurred by decreasing of constrain effects due to stress relaxation at grian boundary.

  • PDF

고유동화제와 시멘트 혼화용 무기미분체가 첨가된 시멘트 페이스트의 유동성 변화 (Fluidity Changes of Cement Paste added Superplasticizer and Inorganic Fine Powders for Cement Admixture)

  • 김도수;정흥호;박병배;노재성
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.751-759
    • /
    • 2000
  • Effects of the dosage change, from 0 to 2.0 wt% based on cement weight, of naphthalenic (NSF) and polycarboxylic(NT-2) superplasticizers, on the fluidity of cement paste substituted by 10 wt% II-anhydrite and fly ash respectively as well as II-anhydrite and fly ash itself were investigated. Dispersion properties between particles in suspension were investigated by zeta potential test. Initial fluidity and slump loss in the paste system were observed through mini-slump and apparent viscosity changes with elapsed time. Zeta potential on the particle surface was a tendency to increase according to increasing of NSF dosage. Especially, zeta potential of fly ash has the highest value among all particles equivalent to NSF dosage. In the fluidity of cement paste substituted by inorganic particles, the specimen with substitution of 10 wt% II-anhydrite and fly ash for cement was more effective than cement itself to improve initial fluidity and retain stable fluidity of cement paste. In addition, effect of NT-2 and NSF to improve the fluidity of cement paste, addition of 1.0 wt% NT-2 was more effective than 1.5wt% NSF.

  • PDF

동해 방사성탄소동위원소 연구 현황과 전망 (Current Status and Prospects Regarding Radiocarbon Studies in the East Sea)

  • 김민경
    • Ocean and Polar Research
    • /
    • 제44권1호
    • /
    • pp.99-111
    • /
    • 2022
  • Together with the development of measurement techniques, radiocarbon (14C) has been increasingly used as a key tool to investigate carbon cycling and associated biogeochemistry in the ocean. In this paper, the current status of radiocarbon studies in the East Sea (Japan Sea) is reviewed. Previously, spatiotemporal distribution and change of the water masses in the East Sea from 1979 to 1999 were investigated by using the 14C in the dissolved inorganic carbon (DIC). Researches on sinking particulate organic carbon (POC) revealed that POC in the deep ocean has more complex and heterogeneous origins than we expected. In particular, since 2011, Korean researchers have been collecting sinking particle samples for more than 10 years, so it is expected that 14C of POC will provide important information to understand carbon cycling in relation to climate change. Although the quantity of 14C data published in the East Sea is still limited, the importance and the future direction of using 14C to understand the biogeochemical mechanisms of carbon cycling and its role as a carbon reservoir in the East Sea are detailed herein.

서울과 고산의 PM2.5 수분함량 계절 특성 (Seasonal Characteristics of PM2.5 Water Content at Seoul and Gosan, Korea)

  • 이형민;김용표
    • 한국대기환경학회지
    • /
    • 제26권1호
    • /
    • pp.94-102
    • /
    • 2010
  • Water content of $PM_{2.5}$ (particles in the atmosphere with a diameter of less than or equal to a nominal $2.5{\mu}m$) was estimated by using a gas/aerosol equilibrium model, SCAPE2, for the particles collected at Seoul and Gosan, Korea. From measured and analyzed characteristics of the particles, the largest difference between Seoul and Gosan is the proportions of total ammonia (t-$NH_3$=gas phase $NH_3$+particle phase ${NH_4}^+$), total nitric acid (t-$HNO_3$=gas phase $HNO_3$+particle phase ${NO_3}^-$) and sulfuric acid ($H_2SO_4$). Even though both sites have sufficient t-$NH_3$ to neutralize acidic species such as $H_2SO_4$, t-$HNO_3$, and t-HCl (total chloric acid=gas phase HCl+particle phase $Cl^-$), equivalent fraction of t-$NH_3$ and t-$HNO_3$ are higher at Seoul and $H_2SO_4$ is higher at Gosan. Based on the modeling result, it is identified that the $PM_{2.5}$ at Seoul is more hygroscopic than Gosan if the meteorological conditions are the same. To reduce water content of $PM_{2.5}$, and thus, mass concentration, control measures for ammonia and nitrate reduction are needed for Seoul, and inter-governmental cooperation is required for Gosan.

2010년 서울에서 관측한 황사와 연무사례의 물리, 화학, 광학적 특성비교 (Physical, Chemical and Optical Properties of an Asian Dust and Haze Episodes Observed at Seoul in 2010)

  • 송승주;김정은;임은하;차주완;김준
    • 한국대기환경학회지
    • /
    • 제31권2호
    • /
    • pp.131-142
    • /
    • 2015
  • This study investigated physicochemical and optical characteristics for three episodes of Asian dust, stagnant haze and long-range transport haze and for one clean day. $PM_{10}$ mass concentration during Asian dust and two haze days was increased by 2~9 times compared to that of clean episode. During Asian dust episode, coarse particle concentration was increased and the mass concentration of calcium in a coarse mode ($1.8{\sim}10{\mu}m$) was $5.4{\mu}g/m^3$ which was 7 times higher than that of clean episode. The calcium was presented as a form of $CaCO_3$ in a coarse mode. During the two haze episodes, fine particle (< $1.8{\mu}m$) concentration was increased and secondary inorganic pollutants such as sulfate, ammonium and nitrate composed of 90% of the total ions. $(NH_4)_2SO_4$ and $NH_4NO_3$ were dominant in a fine mode for stagnant haze episode. But they were the most dominant form in both fine mode and coarse mode for long-range transport haze episode. According to the optical properties for each episode (Asian dust, stagnant haze and long-range transport haze) were classified as dust, black carbon and mixture, respectively.

재래식 정수처리공정에서 조류입자 제거를 위한 DAF Hybrid 공정의 실험적 적용과 입자특성 변화 (Experimental Application of DAF Hybrid Process to Remove Algae Particles for Conventional Water Treatment Processes and Change of Particle Characteristics)

  • 곽동희;유승준
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.516-520
    • /
    • 2008
  • 우리나라는 상수도시설의 노후화와 그 동안의 상수원 수질변화에 대응한 정수처리공정의 개량과 개선이 요구되어지고 있는 상황에 있어서, 기존의 정수처리공정에 어떠한 시설개량이나 설비의 보완 없이 DAF 공정을 추가하여 점토와 조류입자를 효과적으로 제거할 수 있는 DAF hybrid 공정의 적용성을 살펴보고자 일련의 실험을 실시하였다. DAF 공정의 설치위치는 조류입자의 제거에는 응집지나 침전지 전단을 이용하는 DAF-CGS 공정조합보다는 침전지 후단 또는 여과지 전단을 이용하는 DAF-CSF 방식이 더 효과적인 것으로 나타났다. 또한, DAF-CSF hybrid 공정을 도입함으로써 기존의 상수처리조건과 동일한 처리속도(수리학적 부하량)에서 처리효율이 향상될 것이며, 높은 수리학적 부하에서도 재래식 상수도시설에 적용하여 안정된 처리효율을 얻을 수 있을 것으로 판단되었다.

겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자 (Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter)

  • 박승식
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).