• Title/Summary/Keyword: inorganic composites

Search Result 220, Processing Time 0.026 seconds

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

A Study on the Properties and Manufacture of Vinylester Resin Mixtures Used as Sealant of Insulator (단열재의 실링재로 사용되는 비닐에스테르 수지 혼합물의 제조 및 물성에 관한 연구)

  • Suh, Won-Dong;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.27 no.3
    • /
    • pp.174-182
    • /
    • 1992
  • Main components of manufactured sealant were vinylester resin, polybutadiene rubber, asphalt and inorganic filler. For manufactured sealant, liquid and cure properties were tested experimantally. It showed better mechanical properties at rubber content $5{\sim}15phr$. Blown asphalt represented better properties than streight asphalt, showed the highest cohesive strength at asphalt content $6{\sim}8phr$. Appropriate usage of filler was $60{\pm}2%$ of total components, and $Al(OH)_3$ showed better flame-retardancy than $CaCO_3$.

  • PDF

A Study on Thermal, Mechanical and Electrical Properties as Silane Treated Epoxy/MICA Composites (실란처리된 Epoxy/MICA 콤포지트의 열적, 기계적 전기적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • In this study, epoxy/mica composite was prepared by mixing with mechanical stirrer together with homogenizer, and the effect of amino-type silane coupling agent was also studied. To reduce the viscosity without any decrement of other properties, 1,4-Butanediol diglycidyl ether (1,4-BDGE) as an aliphatic epoxy reactive diluent was introduced to the epoxy/mica composite in order to use as vanish for high voltage motor and generator stator winding. It was confirmed by scanning electron microscopy (SEM) observation that interfacial characteristics between organic epoxy and inorganic mica was modified by coupling agent treatment so that glass transition temperature increased, and tensile strength and electrical breakdown strength increased. The properties were estimated by Weibull statistical analysis and the ac electrical breakdown strength was 20.2% modified by treating silane coupling agent.

Improvement of Absorption Performances of Superabsorbent Hydrogel Nanocomposites Using Clay Mineral

  • Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.201-208
    • /
    • 2019
  • Superabsorbent hydrogel (SAH) is a lightly crosslinked hydrophilic functional polymer material comprising a flexible chain structure, which can absorb and retain high amounts of water or aqueous fluids even under high pressure. Therefore, it is important to improve their characteristics such as absorption performance, residual monomer content, and water permeability. SAH nanocomposites were prepared using clay mineral as an inorganic filler and the influence of post-treatment processes such as quenching and aging process on their properties was studied. In addition, surface-crosslinking process was applied to improve the absorption performance associated with mechanical properties and water permeability. The structure of the SAH was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2019
  • Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.

Chemically Bonded Thermally Expandable Microsphere-silica Composite Aerogel with Thermal Insulation Property for Industrial Use

  • Lee, Kyu-Yeon;Phadtare, Varsha D.;Choi, Haryeong;Moon, Seung Hwan;Kim, Jong Il;Bae, Young Kwang;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.23-29
    • /
    • 2019
  • Thermally expandable microsphere and aerogel composite was prepared by chemical compositization. Microsphere can produce synergies with aerogel, especially an enhancement of mechanical property. Through condensation between sulfonated microsphere and hydrolyzed silica sol, chemically-connected composite aerogel could be prepared. The presence of hydroxyl group on the sulfonated microsphere was observed, which was the prime functional group of reaction with hydrolyzed silica sol. Silica aerogel-coated microsphere was confirmed through microstructure analysis. The presence of silicon-carbon absorption band and peaks from composite aerogel was observed, which proved the chemical bonding between them. A relatively low thermal conductivity value of $0.063W/m{\cdot}K$ was obtained.

Photoresponsive Nanocontainers with Ordered Porous Channels

  • Cho, Wansu;Kwon, Youngje;Park, Chiyoung
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.149-155
    • /
    • 2019
  • Controlled mass transport in response to stimuli is essential for drug carriers. The complexity of the signaling system under physiological conditions has led researchers to develop precise nanocontainers that respond to stimuli in the physiological environment. Owing to several reasons, soft nanocontainers such as liposomes and micelles have been investigated for use as drug delivery systems. However, such carriers often suffer from the undesired leakage of drug molecules. In contrast, inorganic nanocontainers are robust, and their surfaces can be easily functionalized. For example, mesoporous silica nanoparticles equipped with gatekeeper molecules are increasingly being used for the controlled release of drug molecules in response to the desired stimuli. Since the development of the first hybrid nanocontainer comprising molecular machines, multiple versions of such gatekeeper systems featuring significantly improved stability and precise response to stimuli have been reported. In this study, various methods for incorporating photoresponsive nanocontainers with porous channels are developed.

Preparation of blocking ultraviolet mica composites using Nano-TiO2 (Nano-TiO2를 이용한 자외선차단 마이카 복합체 제조)

  • Yun, Ki Hoon;Lee, Jaebok;Moon, Young-Jin;Go, Hee Kyoung;Lee, Yi;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1197-1205
    • /
    • 2018
  • UV protection cosmetics belong to functional cosmetics and contain organic or inorganic UV blocking pigments. The inorganic UV blocking pigments are mainly zinc oxide and titanium dioxide. It is known that inorganic UV blocking pigment has a diameter of 60 to 100 nm and has good blocking ability of UVA and UVB. Also, it has high inactivity against sunlight including UV and is excellent in safety. In addition, it is not absorbed or accumulated on the skin like organic pigments and does not cause skin irritation or allergy. In this study, mica, a plate-shaped inorganic pigment, nanosized titanium dioxide, an UV blocking material, and hydrophobic silica were surface-treated with surfactants. And then, titanium dioxide nanoparticles and silica were physically adsorbed on the mica by non-chemical mutual attraction due to differences in charge. Thereafter, the mica complex was surface-treated with silane to prepare a hydrophobic UV blocking pigment complex. The plate-shaped UV blocking composite improves the cohesiveness of a general nanoparticle material titanium dioxide, enhances UV blocking effect due to uniform dispersion, and can greatly improve dispersion stability in cosmetic formulations by surface treatment with hydrophobic property. The surface charge of the pigment was evaluated by zeta potential. The properties of the UV blocking pigment complex were evaluated by FE-SEM, XRD, FT-IR and UV-VIS.

Fire Resistance Study of PP Thermoplastic Composites with Particulate Reinforcements and Br Flame Retardants (무기 입자 강화제와 브롬(Br) 난연제에 따른 폴리프로필렌 복합재료의 난연성 향상에 관한 연구)

  • 곽성복;황성덕;남재도;고재송;최형기
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.260-269
    • /
    • 2002
  • The fire resistance of particulate polypropylene composite systems were investigated by using various reinforced particles such as zeolite, talc, $CaCO_3$ particles. In this study, The effect of particle size on the thermal properties of composite and the effect of reinforced particles on the fire resistance were studied. The inorganic reinforced particles used in this study were recycled zeolite(average particle diameter=85.34 $mu extrm{m}$), $CaCO_3$ (33.93 $mu extrm{m}$), and talc (18.51 $mu extrm{m}$). The fire resistance of composite systems was thoroughly examined by measuring limited oxygen index (LOI, ASTM D2863) and cone calorimetry (ASTM E1354, ISO 5660). Thermal stability of composite systems was thoroughly examined by measuring TGA. The flame retardants (DBDPO) and reinforced particles reduce the maximum heat release rate (M-HRR) in the order of Talc > $CaCO_3$ > recycled Zeolite. Comparing the cone calorimetry experimental results of the particle reinforced polymer composite system exhibited twice higher efficiency than DBDPO in polypropylene systems, and the LOI also showed similar trends to the cone calorimetry experiments. The optical and scanning electron microscopy techniques were used to investigate the composites ash layer and the core fracture surfaces in the burning process. The reinforcing inorganic particles seemed to accumulate at the surface of ash layer, and subsequently intercept the oxygen transport and heat transfer into the core area.

Silica Filler Addition Effect on the Ion Conductivity of PEO Composite Electrolytes Blended with Poly(ethylene imine) (폴리에틸렌 이민과 혼합된 PEO 복합체 전해질의 이온 전도도에 미치는 실리카 필러 첨가 효과)

  • Kim, Juhyun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.465-469
    • /
    • 2011
  • In this study, poly(ethyleneoxide) and poly(ethylene imine) polymer blends containing fumed silica fillers were studied in order to enhance the ion conductivity and interfacial properties. Lithium perchlorate ($LiClO_4$) as a salt, and silica($SiO_2$) as the inorganic filler were introduced into the polymer composite electrolyte composites and the composites were examined to evaluate their ionic conductivity for a possibility test of electrolyte application. As the diameter of semicircle in an impedance test became smaller, ionic conductivity of composite electrolytes had been enhanced by addition of 20 wt% silica filler. However, the conductivity was not greatly changed over 20 wt% content because the silica was sufficiently saturated in the polymer electrolytes. Diffraction peaks of PEO became weaker with the addition of inorganic fillers using XRD analysis. It showed that a crystallinity was proportionally reduced by increasing filler contents. The morphology of composite electrolyte films has been investigated by SEM. The heterogeneous morphology which silica was evenly dispersed by the strong adhesion of PEI was shown at higher contents of silica.